Microscopy of Ultracold Polar Molecules in Optical Lattices
光学晶格中超冷极性分子的显微镜观察
基本信息
- 批准号:1912154
- 负责人:
- 金额:$ 47.1万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-08-01 至 2023-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The world of microscopic particles like atoms or molecules is governed by the laws of quantum mechanics. While these laws describe phenomena unfamiliar in our daily experience, they can be used to engineer revolutionary technologies. Examples include very precise clocks or powerful computers that can solve intractable problems in diverse fields ranging from drug discovery to artificial intelligence. A key requirement for harnessing the power of quantum mechanics for many applications is gaining microscopic control over large systems of interacting quantum particles. This award supports the development of an instrument, a "molecular quantum gas microscope" that will achieve this level of control in a gas of thousands of molecules. Even the very simple molecules used in this experiment exhibit rich behaviors compared to atoms. For example, molecules tumble in space, and the constituent atoms vibrate relative to each other. In addition, molecules made of different atoms are "polar," behaving much like fridge magnets that interact strongly even at a large distance. By cooling molecular gases down to very low temperatures, the quantum nature of their motions and their strong mutual interactions play an increasingly important role and lead to the rearrangement of the molecules into unusual states of matter. These states will be directly imaged and controlled at the level of individual molecules using the molecular microscope. The project will further our understanding of interacting quantum matter, with a potential impact on designing materials with new technological properties. It also holds the potential for realizing a molecule-based platform for quantum computing. The research will train graduate students in the burgeoning field of quantum science, preparing them for future careers in academia, industry and national labs. Ultracold gases of polar molecules are promising for many applications including quantum computation, precision measurements and studies of state-controlled chemical reactions. One application that has been the subject of much recent attention is the quantum simulation of many-body phenomena. The long-range and anisotropic character of the interactions between polar molecules enables quantum simulations that address a variety of areas of contemporary interest in condensed matter physics including out-of-equilibrium quantum dynamics, topological matter and quantum magnetism. An outstanding challenge in this emerging field is the ability to measure and manipulate the quantum state of individual molecules in an interacting array. This project will develop microscopy techniques that enable the extraction of the positions of individual ground-state molecules in an optical lattice with single-site accuracy and the determination of their rotational state. To that end, molecules will be dissociated in a state-sensitive way into their constituent atoms, which will be subsequently detected using well-developed atomic quantum gas microscopy techniques. The project will also study the evaporation of the bosonic molecules to quantum degeneracy, using a large electric field to suppress inelastic collisions. The strong dipolar interactions in a degenerate molecular Bose gas are expected to lead to novel phases of matter, including self-organized crystals and fractional Mott insulators. The molecular quantum gas microscope will enable direct imaging and control of these phases and their excitations.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
原子或分子等微观粒子的世界受量子力学定律支配。虽然这些定律描述了我们日常经验中不熟悉的现象,但它们可以用来设计革命性的技术。例子包括非常精确的时钟或功能强大的计算机,它们可以解决从药物发现到人工智能等各个领域的棘手问题。在许多应用中利用量子力学的力量的一个关键要求是获得对相互作用的量子粒子的大型系统的微观控制。该奖项支持“分子量子气体显微镜”仪器的开发,该仪器将在数千个分子的气体中实现这种水平的控制。与原子相比,即使是本实验中使用的非常简单的分子也表现出丰富的行为。例如,分子在空间中翻滚,组成原子之间相对振动。此外,由不同原子组成的分子是“极性的”,其行为很像冰箱磁铁,即使在很远的距离下也会强烈相互作用。通过将分子气体冷却到非常低的温度,它们运动的量子性质及其强烈的相互作用发挥着越来越重要的作用,并导致分子重新排列成不寻常的物质状态。这些状态将使用分子显微镜在单个分子水平上直接成像和控制。该项目将进一步加深我们对相互作用的量子物质的理解,对设计具有新技术特性的材料具有潜在影响。它还具有实现基于分子的量子计算平台的潜力。该研究将为新兴的量子科学领域的研究生提供培训,为他们未来在学术界、工业界和国家实验室的职业生涯做好准备。极性分子的超冷气体在许多应用中都有前景,包括量子计算、精密测量和状态控制化学反应的研究。最近备受关注的一项应用是多体现象的量子模拟。极性分子之间相互作用的长程和各向异性特征使得量子模拟能够解决当代凝聚态物理中感兴趣的各个领域,包括非平衡量子动力学、拓扑物质和量子磁性。这个新兴领域的一个突出挑战是测量和操纵相互作用阵列中单个分子的量子态的能力。该项目将开发显微技术,能够以单点精度提取光学晶格中各个基态分子的位置并确定其旋转状态。为此,分子将以状态敏感的方式解离成其组成原子,随后将使用成熟的原子量子气体显微镜技术对其进行检测。该项目还将研究玻色子分子蒸发至量子简并,利用大电场抑制非弹性碰撞。简并分子玻色气体中的强偶极相互作用预计将产生新的物质相,包括自组织晶体和分数莫特绝缘体。分子量子气体显微镜将能够直接成像和控制这些相及其激发。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Probing site-resolved correlations in a spin system of ultracold molecules
- DOI:10.1038/s41586-022-05558-4
- 发表时间:2022-07
- 期刊:
- 影响因子:64.8
- 作者:Lysander Christakis;J. Rosenberg;Ravin Raj;Sung-Shui Chi;A. Morningstar;D. Huse;Zoe Z. Yan;W. Bakr
- 通讯作者:Lysander Christakis;J. Rosenberg;Ravin Raj;Sung-Shui Chi;A. Morningstar;D. Huse;Zoe Z. Yan;W. Bakr
Observation of the Hanbury Brown–Twiss effect with ultracold molecules
- DOI:10.1038/s41567-022-01695-9
- 发表时间:2021-11
- 期刊:
- 影响因子:19.6
- 作者:J. Rosenberg;Lysander Christakis;Elmer Guardado-Sanchez;Zoe Z. Yan;W. Bakr
- 通讯作者:J. Rosenberg;Lysander Christakis;Elmer Guardado-Sanchez;Zoe Z. Yan;W. Bakr
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Waseem Bakr其他文献
Anomalous fluid flow in quantum systems
量子系统中的异常流体流动
- DOI:
10.1126/science.abn6376 - 发表时间:
2022 - 期刊:
- 影响因子:56.9
- 作者:
A. Morningstar;Waseem Bakr - 通讯作者:
Waseem Bakr
Pairing with a twist
- DOI:
10.1038/nphys2851 - 发表时间:
2013-12 - 期刊:
- 影响因子:19.6
- 作者:
Waseem Bakr - 通讯作者:
Waseem Bakr
Waseem Bakr的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Waseem Bakr', 18)}}的其他基金
Programmable Optical Tweezer Arrays for Studying Strongly Correlated Fermions
用于研究强相关费米子的可编程光镊阵列
- 批准号:
2110475 - 财政年份:2021
- 资助金额:
$ 47.1万 - 项目类别:
Continuing Grant
Atom-resolved microscopy of exotic superfluids in spin-imbalanced Fermi gases
自旋不平衡费米气体中奇异超流体的原子分辨显微镜
- 批准号:
1607277 - 财政年份:2016
- 资助金额:
$ 47.1万 - 项目类别:
Standard Grant
相似国自然基金
超冷基态碱土极性分子量子态的制备及操控
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:面上项目
基于Feshbach共振结合光泵浦技术的超冷钠铯极性分子高效制备实验研究
- 批准号:12104276
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
超冷极性单分子合成与操控的实验探究
- 批准号:12104464
- 批准年份:2021
- 资助金额:20 万元
- 项目类别:青年科学基金项目
光晶格中超冷极性分子的制备及量子态操控
- 批准号:62175140
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:面上项目
超冷极性分子新型非弹性碰撞的损耗机制与外场调控
- 批准号:
- 批准年份:2020
- 资助金额:62 万元
- 项目类别:面上项目
相似海外基金
Experiments with ultracold polar molecules in magic traps
魔法陷阱中超冷极性分子的实验
- 批准号:
2748102 - 财政年份:2022
- 资助金额:
$ 47.1万 - 项目类别:
Studentship
SimPoMol: Quantum Simulation with Ultracold Polar Molecules
SimPoMol:超冷极性分子的量子模拟
- 批准号:
EP/X023354/1 - 财政年份:2022
- 资助金额:
$ 47.1万 - 项目类别:
Research Grant
Interfacing Ultracold Polar Molecules with Rydberg atoms: A Hybrid Platform for Quantum Science
超冷极性分子与里德伯原子的接口:量子科学的混合平台
- 批准号:
EP/V047302/1 - 财政年份:2021
- 资助金额:
$ 47.1万 - 项目类别:
Research Grant
A gas of ultracold polar molecules at high phase-space density
高相空间密度的超冷极性分子气体
- 批准号:
2127601 - 财政年份:2018
- 资助金额:
$ 47.1万 - 项目类别:
Studentship
Towards quantum simulation with ultracold polar molecules
超冷极性分子的量子模拟
- 批准号:
1918074 - 财政年份:2017
- 资助金额:
$ 47.1万 - 项目类别:
Studentship