Microscopy of Ultracold Polar Molecules in Optical Lattices

光学晶格中超冷极性分子的显微镜观察

基本信息

  • 批准号:
    1912154
  • 负责人:
  • 金额:
    $ 47.1万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-08-01 至 2023-07-31
  • 项目状态:
    已结题

项目摘要

The world of microscopic particles like atoms or molecules is governed by the laws of quantum mechanics. While these laws describe phenomena unfamiliar in our daily experience, they can be used to engineer revolutionary technologies. Examples include very precise clocks or powerful computers that can solve intractable problems in diverse fields ranging from drug discovery to artificial intelligence. A key requirement for harnessing the power of quantum mechanics for many applications is gaining microscopic control over large systems of interacting quantum particles. This award supports the development of an instrument, a "molecular quantum gas microscope" that will achieve this level of control in a gas of thousands of molecules. Even the very simple molecules used in this experiment exhibit rich behaviors compared to atoms. For example, molecules tumble in space, and the constituent atoms vibrate relative to each other. In addition, molecules made of different atoms are "polar," behaving much like fridge magnets that interact strongly even at a large distance. By cooling molecular gases down to very low temperatures, the quantum nature of their motions and their strong mutual interactions play an increasingly important role and lead to the rearrangement of the molecules into unusual states of matter. These states will be directly imaged and controlled at the level of individual molecules using the molecular microscope. The project will further our understanding of interacting quantum matter, with a potential impact on designing materials with new technological properties. It also holds the potential for realizing a molecule-based platform for quantum computing. The research will train graduate students in the burgeoning field of quantum science, preparing them for future careers in academia, industry and national labs. Ultracold gases of polar molecules are promising for many applications including quantum computation, precision measurements and studies of state-controlled chemical reactions. One application that has been the subject of much recent attention is the quantum simulation of many-body phenomena. The long-range and anisotropic character of the interactions between polar molecules enables quantum simulations that address a variety of areas of contemporary interest in condensed matter physics including out-of-equilibrium quantum dynamics, topological matter and quantum magnetism. An outstanding challenge in this emerging field is the ability to measure and manipulate the quantum state of individual molecules in an interacting array. This project will develop microscopy techniques that enable the extraction of the positions of individual ground-state molecules in an optical lattice with single-site accuracy and the determination of their rotational state. To that end, molecules will be dissociated in a state-sensitive way into their constituent atoms, which will be subsequently detected using well-developed atomic quantum gas microscopy techniques. The project will also study the evaporation of the bosonic molecules to quantum degeneracy, using a large electric field to suppress inelastic collisions. The strong dipolar interactions in a degenerate molecular Bose gas are expected to lead to novel phases of matter, including self-organized crystals and fractional Mott insulators. The molecular quantum gas microscope will enable direct imaging and control of these phases and their excitations.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
微观颗粒(如原子或分子)的世界受量子力学定律的控制。尽管这些法律描述了我们日常经验中不熟悉的现象,但它们可以用于设计革命性技术。示例包括非常精确的时钟或功能强大的计算机,这些计算机可以解决从药物发现到人工智能的各种领域中的棘手问题。利用量子力学的力量来用于许多应用的关键要求是对大型相互作用量子颗粒系统进行微观控制。该奖项支持一种仪器的开发,即一种“分子量子气显微镜”,它将在数千个分子的气体中实现这种控制水平。即使在本实验中使用的非常简单的分子也表现出与原子相比的丰富行为。例如,分子在空间中滚滚,成分原子相对于彼此振动。另外,由不同原子制成的分子是“极性”的,其表现与冰箱磁铁一样,即使在很大距离处相互作用也很强。通过冷却分子气体至非常低的温度,其运动的量子性质和强烈的相互作用起着越来越重要的作用,并导致分子重新排列到异常物质状态。这些状态将使用分子显微镜在单个分子水平上直接成像和控制。该项目将进一步了解相互作用的量子问题,并可能影响使用新技术特性设计材料。它还具有实现基于分子的量子计算平台的潜力。这项研究将在Quantum Science新兴领域的研究生中培训研究生,为他们为学术界,工业和国家实验室的未来职业做准备。极性分子的超速气体对于许多应用来说是有希望的,包括量子计算,精确测量和对状态控制的化学反应的研究。最近关注的一种应用是多体现象的量子模拟。极性分子之间相互作用的远距离和各向异性特征实现了量子模拟,这些模拟解决了各种在凝结物理学中的当代兴趣领域,包括量子外量子动力学不平衡,拓扑和量子磁性。在这个新兴领域的一个突出挑战是能够测量和操纵相互作用阵列中个体分子的量子状态。该项目将开发显微镜技术,以在光学晶格中以单位点的精度和旋转状态的测定来提取单个基态分子的位置。为此,分子将以国家敏感的方式分离到其成分原子中,随后将使用发育良好的原子量子气显微镜技术检测到该原子。该项目还将使用大型电场来抑制非弹性碰撞,研究纤维计分子对量子退化的蒸发。预期退化分子叶气体中的强偶极相互作用将导致物质的新阶段,包括自组织的晶体和分数莫特绝缘子。分子量子气显微镜将对这些阶段及其激发进行直接成像和控制。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的智力优点和更广泛的影响评估标准通过评估来获得支持的。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Probing site-resolved correlations in a spin system of ultracold molecules
  • DOI:
    10.1038/s41586-022-05558-4
  • 发表时间:
    2022-07
  • 期刊:
  • 影响因子:
    64.8
  • 作者:
    Lysander Christakis;J. Rosenberg;Ravin Raj;Sung-Shui Chi;A. Morningstar;D. Huse;Zoe Z. Yan;W. Bakr
  • 通讯作者:
    Lysander Christakis;J. Rosenberg;Ravin Raj;Sung-Shui Chi;A. Morningstar;D. Huse;Zoe Z. Yan;W. Bakr
Observation of the Hanbury Brown–Twiss effect with ultracold molecules
  • DOI:
    10.1038/s41567-022-01695-9
  • 发表时间:
    2021-11
  • 期刊:
  • 影响因子:
    19.6
  • 作者:
    J. Rosenberg;Lysander Christakis;Elmer Guardado-Sanchez;Zoe Z. Yan;W. Bakr
  • 通讯作者:
    J. Rosenberg;Lysander Christakis;Elmer Guardado-Sanchez;Zoe Z. Yan;W. Bakr
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Waseem Bakr其他文献

Anomalous fluid flow in quantum systems
量子系统中的异常流体流动
  • DOI:
    10.1126/science.abn6376
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    56.9
  • 作者:
    A. Morningstar;Waseem Bakr
  • 通讯作者:
    Waseem Bakr
Pairing with a twist
  • DOI:
    10.1038/nphys2851
  • 发表时间:
    2013-12
  • 期刊:
  • 影响因子:
    19.6
  • 作者:
    Waseem Bakr
  • 通讯作者:
    Waseem Bakr

Waseem Bakr的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Waseem Bakr', 18)}}的其他基金

Programmable Optical Tweezer Arrays for Studying Strongly Correlated Fermions
用于研究强相关费米子的可编程光镊阵列
  • 批准号:
    2110475
  • 财政年份:
    2021
  • 资助金额:
    $ 47.1万
  • 项目类别:
    Continuing Grant
Atom-resolved microscopy of exotic superfluids in spin-imbalanced Fermi gases
自旋不平衡费米气体中奇异超流体的原子分辨显微镜
  • 批准号:
    1607277
  • 财政年份:
    2016
  • 资助金额:
    $ 47.1万
  • 项目类别:
    Standard Grant

相似国自然基金

分析型超速离心用于单分散核壳结构胶体粒子的形成机理研究
  • 批准号:
    22372058
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于胶体超速离心技术的锂空电池正极纳米梯度结构的设计与合成
  • 批准号:
    21802043
  • 批准年份:
    2018
  • 资助金额:
    27.0 万元
  • 项目类别:
    青年科学基金项目
基于数据融合的超速事件时空计量模型构建及协同干预方法研究
  • 批准号:
    71801182
  • 批准年份:
    2018
  • 资助金额:
    18.0 万元
  • 项目类别:
    青年科学基金项目
地球和金星自转变化的流体激发
  • 批准号:
    11773057
  • 批准年份:
    2017
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目
分析型超速离心用于不同拓扑结构的聚合物的表征
  • 批准号:
    21674107
  • 批准年份:
    2016
  • 资助金额:
    65.0 万元
  • 项目类别:
    面上项目

相似海外基金

Experiments with ultracold polar molecules in magic traps
魔法陷阱中超冷极性分子的实验
  • 批准号:
    2748102
  • 财政年份:
    2022
  • 资助金额:
    $ 47.1万
  • 项目类别:
    Studentship
SimPoMol: Quantum Simulation with Ultracold Polar Molecules
SimPoMol:超冷极性分子的量子模拟
  • 批准号:
    EP/X023354/1
  • 财政年份:
    2022
  • 资助金额:
    $ 47.1万
  • 项目类别:
    Research Grant
Interfacing Ultracold Polar Molecules with Rydberg atoms: A Hybrid Platform for Quantum Science
超冷极性分子与里德伯原子的接口:量子科学的混合平台
  • 批准号:
    EP/V047302/1
  • 财政年份:
    2021
  • 资助金额:
    $ 47.1万
  • 项目类别:
    Research Grant
A gas of ultracold polar molecules at high phase-space density
高相空间密度的超冷极性分子气体
  • 批准号:
    2127601
  • 财政年份:
    2018
  • 资助金额:
    $ 47.1万
  • 项目类别:
    Studentship
Towards quantum simulation with ultracold polar molecules
超冷极性分子的量子模拟
  • 批准号:
    1918074
  • 财政年份:
    2017
  • 资助金额:
    $ 47.1万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了