EAGER: Directionally Aligned Macroporous Ceramics with In-Situ Synthesized Functional Polymer Microgels as a Platform for Next Generation Membrane Chromatography

EAGER:定向排列大孔陶瓷与原位合成功能聚合物微凝胶作为下一代膜色谱的平台

基本信息

  • 批准号:
    1911972
  • 负责人:
  • 金额:
    $ 19.46万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-06-01 至 2021-05-31
  • 项目状态:
    已结题

项目摘要

A monoclonal antibody is a protein capable of specifically binding a targeted molecule or receptor. Through this specific binding, antibodies become highly active drugs with reduced side effects. The market for biopharmaceuticals, such as monoclonal antibodies, is growing rapidly, with worldwide sales expected to reach $125 billion by 2020. The growing demand for antibodies and related biologics has driven up the cost of treatment using these products. As a result, the biopharmaceutical industry is increasingly under pressure from regulators, healthcare providers, and consumers to decrease production and treatment costs. Purification of monoclonal antibodies during bioprocessing is both slow and costly, representing more than 80% of the manufacturing expense. Membrane adsorbers are emerging as more efficient separation systems compared to conventional resin column beds in downstream biopharmaceutical manufacturing. Membrane adsorbers can be operated with much higher flow rates and throughput and, thus, are ideally suited for reducing processing times and production costs. The overarching goal of the EAGER project is to build the foundation for a new generation of macroporous membrane materials and modules that overcome the capacity, selectivity, and throughput limitations of existing commercial membrane adsorbers. To achieve this goal, functional polymers with high protein binding capacity and selectivity will be coupled with high surface area macroporous ceramic scaffolds, which can be configured into scalable modules for continuous bioprocessing. Within the biopharmaceutical manufacturing community, the desired transition to precisely targeted therapeutics based on monoclonal antibodies (mAb) depends on dramatically increasing manufacturing speed and reducing production costs. Although membrane chromatography has demonstrated advantages over standard column chromatography, including higher throughput and lower cost, it is limited by low protein binding capacity and selectivity of commercial membrane adsorbers as well as complex module configurations and fabrication. Consequently, there is a critical need for a new generation of membrane adsorber materials that can be readily configured into scalable modules with high binding capacity and selectivity. This project seeks to build a foundation for the next generation of scalable membrane adsorber materials and modules for downstream biopharmaceutical manufacturing that overcome the limitations of existing commercial membranes. This EAGER project will focus on achieving two specific objectives: the design, preparation, and characterization of 1) salt-tolerant membrane adsorbers with high protein binding capacity for mAb purification; and 2) membrane adsorbers for selective mAb capture and recovery from bioreactor harvests. The strategy to establish the foundation for these membrane adsorbers relies upon the design of a family of macroporous ceramics with tunable pore size, structure, and morphology using directional solution freeze casting. Building upon the porous scaffolds, a two-pronged approach will be undertaken. Firstly, in-situ polymerization and phase-separation micromolding will be employed to prepare functional polymer microgels inside macroporous ceramic scaffolds that contain high concentrations of ligands with large protein binding capacity and selectivity. Secondly, conformal microgel coatings of highly tortuous dendritic pores will be prepared to provide hydrodynamic trapping and adsorption sites inside macroporous scaffolds. Fundamental understanding of the material preparation and functionalization process and protein binding capacity and selectivity will be developed.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
单克隆抗体是一种能够特异性结合靶向分子或受体的蛋白质。通过这种特定的结合,抗体成为高度活性药物,副作用降低。诸如单克隆抗体之类的生物药物市场的市场正在迅速增长,到2020年,全球销售额预计将达到1,250亿美元。对抗体和相关生物制剂的需求不断增长,促进了使用这些产品的治疗成本。结果,生物制药行业越来越受监管机构,医疗保健提供者和消费者降低生产和治疗成本的压力。生物处理过程中单克隆抗体的纯化既缓慢又昂贵,占制造费用的80%以上。与下游生物制药制造中的常规树脂柱床相比,膜吸附者正在成为更有效的分离系统。膜吸附者可以以更高的流速和吞吐量进行操作,因此非常适合减少处理时间和生产成本。急切的项目的总体目标是为克服现有商业膜吸附剂的容量,选择性和吞吐量限制的新一代大型膜材料和模块奠定基础。为了实现这一目标,具有高蛋白质结合能力和选择性的功能聚合物将与高表面积大陶瓷支架相结合,可以将其配置为可扩展的模块,以进行连续生物处理。在生物制药制造社区中,基于单克隆抗体(MAB)的精确靶向治疗剂的期望过渡取决于显着提高制造速度并降低生产成本。尽管膜色谱法证明了与标准色谱柱色谱法相比的优势,包括更高的吞吐量和较低的成本,但它受到蛋白质结合能力低的限制和商业膜吸附剂的选择性,以及复杂的模块构型和制造。因此,新一代的膜吸附材料迫切需要,这些材料可以容易地将其配置为具有高结合能力和选择性的可扩展模块。该项目旨在为下一代可扩展的膜吸附物材料和模块建立基础,用于下游生物制药制造,以克服现有商业膜的局限性。这个急切的项目将着重于实现两个特定的目标:1)具有高蛋白结合能力以纯化的MAB纯化能力的耐盐膜剂的设计,制备和表征; 2)膜吸附剂,用于从生物反应器收获中捕获和恢复的选择性mAb。为这些膜吸附者建立基础的策略依赖于使用定向溶液冻结铸造具有可调孔径,结构和形态的大型陶瓷家族的设计。在多孔脚手架的基础上,将采取两管齐下的方法。首先,将采用原位聚合和相分离微量重要来制备大孔陶瓷支架内的功能性聚合物微凝胶,这些陶瓷支架中含有高浓度的配体具有较大蛋白质结合能力和选择性的配体。其次,将准备高度曲折的树突状孔的保形微凝胶涂层,以便在大孔支架内提供流体动力诱捕和吸附位点。对材料制备和功能化过程以及蛋白质结合能力和选择性的基本理解将得到发展。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子优点和更广泛的影响来通过评估来支持的。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Coarsening of dendrites in solution-based freeze-cast ceramic systems
  • DOI:
    10.1016/j.actamat.2021.117039
  • 发表时间:
    2021-06-21
  • 期刊:
  • 影响因子:
    9.4
  • 作者:
    Arai, Noriaki;Stan, Tiberiu;Faber, Katherine T.
  • 通讯作者:
    Faber, Katherine T.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Katherine Faber其他文献

Katherine Faber的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Katherine Faber', 18)}}的其他基金

WORKSHOP: Emerging Opportunities in Ceramic and Glass Science - A Workshop
研讨会:陶瓷和玻璃科学的新兴机会 - 研讨会
  • 批准号:
    1619666
  • 财政年份:
    2016
  • 资助金额:
    $ 19.46万
  • 项目类别:
    Standard Grant
Silicon-Based Porous Ceramics via Freeze-Casting Preceramic Polymers
通过冷冻铸造陶瓷前体聚合物制备硅基多孔陶瓷
  • 批准号:
    1411218
  • 财政年份:
    2014
  • 资助金额:
    $ 19.46万
  • 项目类别:
    Standard Grant
Support for the 4th International Congress on Ceramics; Chicago, IL; July 15-19, 2012
支持第四届国际陶瓷大会;
  • 批准号:
    1202016
  • 财政年份:
    2012
  • 资助金额:
    $ 19.46万
  • 项目类别:
    Standard Grant
Student Support for 2nd International Congress on Ceramics; Verona, Italy; June 29 - July 4, 2008
第二届国际陶瓷大会的学生支持;
  • 批准号:
    0820561
  • 财政年份:
    2008
  • 资助金额:
    $ 19.46万
  • 项目类别:
    Standard Grant
Materials World Network: Ceramic Composites from Natural and Synthetic Scaffolds
材料世界网络:天然和合成支架的陶瓷复合材料
  • 批准号:
    0710630
  • 财政年份:
    2007
  • 资助金额:
    $ 19.46万
  • 项目类别:
    Continuing Grant
Student Support for First International Congress on Ceramics; Toronto, Canada; June 25-29, 2006
学生对第一届国际陶瓷大会的支持;
  • 批准号:
    0614043
  • 财政年份:
    2006
  • 资助金额:
    $ 19.46万
  • 项目类别:
    Standard Grant
NSF-Europe: SiC-Based Ceramics via Naturally Derived Scaffolds
NSF-Europe:基于天然支架的碳化硅陶瓷
  • 批准号:
    0244258
  • 财政年份:
    2003
  • 资助金额:
    $ 19.46万
  • 项目类别:
    Standard Grant
FMS/UMC Meeting on Materials Education: Opportunities over a Lifetime, U of Maryland, College Park, MD, May 20-21, 2002
FMS/UMC 材料教育会议:一生的机会,马里兰大学,马里兰州科利奇帕克,2002 年 5 月 20-21 日
  • 批准号:
    0205162
  • 财政年份:
    2002
  • 资助金额:
    $ 19.46万
  • 项目类别:
    Standard Grant
Density-Graded and Texture-Graded Ceramics
密度分级和质地分级陶瓷
  • 批准号:
    9800257
  • 财政年份:
    1998
  • 资助金额:
    $ 19.46万
  • 项目类别:
    Continuing Grant
Textured Iron Titanate: A Route to Tough, Single-Phase Ceramics
织构化钛酸铁:打造坚韧单相陶瓷的途径
  • 批准号:
    9411477
  • 财政年份:
    1994
  • 资助金额:
    $ 19.46万
  • 项目类别:
    Continuing Grant

相似国自然基金

染色质结构调控转录起始方向的研究
  • 批准号:
    32370645
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
均一性金属辅助深硅刻蚀的方向调控机制研究
  • 批准号:
    62304035
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
多级分散体系下沥青砂浆负载形变方向性特征及其力学性能宏细观关联机制
  • 批准号:
    52378435
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
考虑多维地震动及其方向性的曲线梁桥抗震韧性评估方法研究
  • 批准号:
    52308211
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

精神保健福祉領域における当事者主導研究のELSI対処方策に向けたガイダンスの作成
在患者发起的心理健康和福利领域的研究中为 ELSI 应对策略制定指南
  • 批准号:
    24K13330
  • 财政年份:
    2024
  • 资助金额:
    $ 19.46万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
細胞の短軸方向の極性制御を実現するタンパク質の同定
控制细胞短轴极性的蛋白质的鉴定
  • 批准号:
    24K08659
  • 财政年份:
    2024
  • 资助金额:
    $ 19.46万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
細胞農業による新開発食品に関する国民理解向上にむけた情報提供のあり方の探求
探索提供信息的方法,以提高公众对细胞农业新开发食品的了解
  • 批准号:
    24K05517
  • 财政年份:
    2024
  • 资助金额:
    $ 19.46万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
非弾性散乱で探る銀河中心方向から到来する軽い暗黒物質の検証
使用非弹性散射验证来自银河系中心的光暗物质
  • 批准号:
    24K07061
  • 财政年份:
    2024
  • 资助金额:
    $ 19.46万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
球面上のデザイン理論と方向統計学の融合
球形设计理论与方向统计的融合
  • 批准号:
    24K06871
  • 财政年份:
    2024
  • 资助金额:
    $ 19.46万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了