CNS Core: Small: Software-Hardware Reconfigurable Systems for Mobile Millimeter-Wave Networks

CNS 核心:小型:移动毫米波网络的软硬件可重构系统

基本信息

  • 批准号:
    1910853
  • 负责人:
  • 金额:
    $ 50万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-10-01 至 2024-03-31
  • 项目状态:
    已结题

项目摘要

Millimeter-wave is a core technology for next-generation wireless and cellular networks (5G and beyond). Networks using millimeter-wave technologies are expected to satiate the rapidly growing customer appetite for mobile data and to meet the stringent throughput, latency, and reliability requirements of emerging applications, such as immersive virtual and mixed reality, tactile internet, vehicular communications, and autonomous vehicles safety. However, high directionality, high channel dynamics, and sensitivity to blockages render state-of-the-art millimeter-wave technologies unsuitable for low-latency, high performance, and ultra-reliable applications. This research project focuses on designing software-hardware reconfigurable systems to address the key challenges and improve the performance, availability, and reliability of mobile millimeter-wave networks. This project will impact the broader population positively because it yields near-term benefits in 5G infrastructure and paves the way for long-term millimeter-wave research. Furthermore, this project will engage in outreach activities and involve a diverse set of students, particularly, women and minorities, leveraging the experimental nature of the research on next-generation wireless and cellular networks.The project addresses the key challenges by executing three thrusts: (1) MilliNet: To overcome high signal attenuation, millimeter-wave radios must focus their power via highly directional, electronically steerable beams. But, aligning the beams and maintaining the link between devices during obstruction and mobility are the fundamental barriers toward reliable connection. MilliNet, a faster beam alignment protocol, draws on ideas from the sparse channel recovery, allowing the radios to quickly discern the best physical millimeter-wave paths even under thousands of beams and picocell choices. (2) ReconMilli: To achieve spectrum flexibility, next-generation radios must be able to operate over a wide range of the spectrum, from micro-wave to millimeter-wave. But the fundamental challenge is that physical space on mobile devices is limited. ReconMilli, a reconfigurable antenna design, joins multiple millimeter-wave antennas physically into a micro-wave antenna, but splits it, when needed, into multiple millimeter-wave antennas; thus, achieving spectrum flexibility and saving physical space. (3) LiMesh: To make the deployment and maintenance of a 5G picocell mesh easy, mobile operators will use multi-Gbps fixed millimeter-wave links. Yet, disruptions in the wireless mesh are common; but, more importantly, such disruptions are catastrophic for ultra-reliable connectivity. LiMesh, an ultra-reliable picocell mesh design, leverages the fixed geometrical arrangement of the directional links to infer disruptions using a space-time failure correlation metric proactively. The research project will design, build, and empirically validate the proposed systems in millimeter-wave wireless test-beds.This project is jointly funded by the Computer and Network Systems (CNS) division and the Established Program to Stimulate Competitive Research (EPSCoR).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
毫米波是下一代无线和蜂窝网络(5G及以后)的核心技术。使用毫米波技术的网络有望满足于迅速增长的移动数据客户需求,并满足新兴应用程序的严格吞吐量,潜伏期和可靠性要求,例如沉浸式虚拟和混合现实,触觉互联网,车辆通信和自动驾驶汽车安全。但是,高方向性,高通道动力学和对阻塞的敏感性使最新的毫米波技术不适合低延迟,高性能和超可靠的应用。该研究项目着重于设计软件硬件可重构系统,以应对关键挑战并提高移动毫米波网络的性能,可用性和可靠性。该项目将对更广泛的人口产生积极的影响,因为它在5G基础设施中产生了近期收益,并为长期毫米波研究铺平了道路。此外,该项目将从事外展活动,并涉及各种各样的学生,尤其是妇女和少数群体,利用了关于下一代无线和蜂窝网络的研究的实验性质。该项目通过执行三个力量来应对关键挑战:(1)Millinet:克服高信号衰减,高信号衰减,毫米级波射线射击高度范围,这是高度的电源。但是,将横梁对齐并保持障碍物和活动性期间设备之间的联系是通往可靠连接的基本障碍。 Millinet是一种更快的光束对齐协议,它借鉴了稀疏通道恢复中的想法,从而使收音机可以快速辨别最佳的物理毫米波路径,即使是成千上万的横梁和Picocell选择。 (2)Reconmilli:为了实现频谱灵活性,下一代无线电必须能够在从微波到毫米波的范围内运行。但是,根本的挑战是移动设备上的物理空间有限。可重新配置的天线设计Reconmilli将多个毫米波天线与微波天线进行物理连接在一起,但在需要时将其分解为多毫米波天线。因此,实现频谱灵活性并节省物理空间。 (3)Limesh:为了使5G Picocell网状网的部署和维护简单,移动操作员将使用多GBPS固定毫米波链路。然而,无线网格中的破坏是常见的。但是,更重要的是,这种破坏对超可靠的连通性是灾难性的。 Limesh是一种非常可靠的Picocell网状设计,利用定向链接的固定几何布置使用时空失败相关度度量来推断破坏。 The research project will design, build, and empirically validate the proposed systems in millimeter-wave wireless test-beds.This project is jointly funded by the Computer and Network Systems (CNS) division and the Established Program to Stimulate Competitive Research (EPSCoR).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.

项目成果

期刊论文数量(41)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
CmWave to MmWave Reconfigurable Antenna for 5G Applications
Towards Deep Learning Augmented Robust D-Band Millimeter-Wave Picocell Deployment
迈向深度学习增强稳健 D 频段毫米波微微蜂窝部署
A millimeter-wave wireless sensing approach for at-home exercise recognition
用于家庭运动识别的毫米波无线传感方法
  • DOI:
    10.1145/3498361.3538781
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sitar, Edward M;Saadat, Moh Sabbir;Sur, Sanjib
  • 通讯作者:
    Sur, Sanjib
mmFlow: Facilitating At-Home Spirometry with 5G Smart Devices
Thin Film Enabled Engineered Substrate for Miniaturized Antennas with Improved Bandwidth
用于具有改进带宽的小型化天线的薄膜工程基板
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sanjib Sur其他文献

Handwritten Bangla character recognition in machine-printed forms using gradient information and Haar wavelet
使用梯度信息和 Haar 小波识别机器打印形式的手写孟加拉字符
Poster: Scoping Environment to Assist 60 GHz Link Deployment
海报:协助 60 GHz 链路部署的环境范围界定
Order of FIB Updates Seldom Matters: Fast Reroute and Fast Convergence with Interface-Specific Forwarding
FIB 更新的顺序并不重要:通过特定于接口的转发实现快速重新路由和快速收敛
  • DOI:
    10.1016/j.hcc.2022.100072
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Phani Krishna Penumarthi;Aaron Pecora;Sanjib Sur;J. O’Kane;Srihari Nelakuditi
  • 通讯作者:
    Srihari Nelakuditi
Poster: MilliPose: Facilitating Full Body Silhouette Imaging from Millimeter-Wave Device
海报:MilliPose:促进毫米波设备的全身轮廓成像
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Aakriti Adhikari;Sanjib Sur
  • 通讯作者:
    Sanjib Sur

Sanjib Sur的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sanjib Sur', 18)}}的其他基金

NeTS: Small: NSF-DST: Modernizing Underground Mining Operations with Millimeter-Wave Imaging and Networking
NeTS:小型:NSF-DST:利用毫米波成像和网络实现地下采矿作业现代化
  • 批准号:
    2342833
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
CAREER: Vision and Learning Augmented D-Band Networking and Imaging
职业:视觉和学习增强 D 波段网络和成像
  • 批准号:
    2144505
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant

相似国自然基金

基于NRF2调控KPNB1促进PD-L1核转位介导非小细胞肺癌免疫治疗耐药的机制研究
  • 批准号:
    82303969
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
小胶质细胞调控外侧隔核-腹侧被盖区神经环路介导社交奖赏障碍的机制研究
  • 批准号:
    82304474
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
肾去交感神经术促进下丘脑室旁核小胶质细胞M2型极化减轻心衰损伤的机制研究
  • 批准号:
    82370387
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
空间邻近标记技术研究莱茵衣藻蛋白核小管与碳浓缩机制的潜在关系
  • 批准号:
    32300220
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
polyG蛋白聚集体诱导小胶质细胞活化在神经元核内包涵体病中的作用及机制研究
  • 批准号:
    82301603
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CNS Core: Small: Core Scheduling Techniques and Programming Abstractions for Scalable Serverless Edge Computing Engine
CNS Core:小型:可扩展无服务器边缘计算引擎的核心调度技术和编程抽象
  • 批准号:
    2322919
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
CNS Core: Small: Network Wide Sensing by Leveraging Cellular Communication Networks
CNS 核心:小型:利用蜂窝通信网络进行全网络传感
  • 批准号:
    2343469
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
CNS Core: Small: Intelligent Fault Injection to Expose and Reproduce Production-Grade Bugs in Cloud Systems
CNS 核心:小型:智能故障注入以暴露和重现云系统中的生产级错误
  • 批准号:
    2317698
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
CNS Core: Small: Repurposing Smartphones to Minimize Carbon
CNS 核心:小型:重新利用智能手机以最大限度地减少碳排放
  • 批准号:
    2233894
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Small: A Compilation System for Mapping Deep Learning Models to Tensorized Instructions (DELITE)
合作研究:CNS Core:Small:将深度学习模型映射到张量化指令的编译系统(DELITE)
  • 批准号:
    2230945
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了