CNS Core: Small: DeepEdge: QoE-based Resource Allocation for Future Heterogeneous and Dynamic Edge-IoT Applications

CNS 核心:小型:DeepEdge:面向未来异构和动态边缘物联网应用的基于 QoE 的资源分配

基本信息

  • 批准号:
    1909520
  • 负责人:
  • 金额:
    $ 50万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-10-01 至 2022-12-31
  • 项目状态:
    已结题

项目摘要

The emerging Internet of Things (IoT) is connecting increasing numbers of smart devices and enabling varieties of heterogeneous IoT applications, empowered by cloud and edge computing technologies. In particular, edge or fog computing technologies will significantly benefit IoT applications that are delay-sensitive, bandwidth/data intensive, or that require closer intelligence. However, for effective Edge-IoT resource allocation, significant challenges exist due to the following requirements and constraints: 1) the demand side that a massive number of IoT devices can run heterogeneous applications with various Quality of Service (QoS) requirements and different priorities; and 2) the supply side that the edge clouds need to dynamically and optimally allocate limited and multidimensional resources (CPU, storage, and bandwidth) at geospatially distributed points. The objective of this project is to respond to these challenges by designing and developing a new Edge-IoT framework named DeepEdge using deep online learning that allocates resources to heterogeneous IoT applications and dynamic IoT devices to maximize users' Quality of Experience (QoE). The proposed research will advance knowledge and fundamentally change the way future edge computing systems work in supporting heterogeneous and dynamic IoT applications. The transformative research outcomes will benefit users and society with inexpensive and effective IoT application delivery, and contribute to important societal challenges in supporting emerging IoT devices and applications. The project will also broadly involve and impact K-12 underrepresented groups and female students in computer science, and develop strong research and education integration for various levels of students. The goal of the proposed research is to develop the framework, model, and algorithms in effectively delivering heterogeneous IoT applications on edge clouds and provisioning high-quality QoE for users. More specifically, the project will result in: i) a new QoE model to quantify the users satisfaction and its related factors including multiple applications QoS requirements and applications priority; ii) a new deep machine learning based two-stage resource allocation scheme that will adapt application QoS requirements according to available resources at the edge cloud and maintain application's priority, and will intelligently and jointly allocate communication and computation resources with the objective of maximization of users QoE; iii) a novel deep Q-learning scheme that will dynamically select the most appropriate edge nodes to handle the multiple application tasks with the goal to optimize the task execution delay; iv) a hardware and software test-bed implementation to validate and evaluate the effectiveness, efficiency, and the practicality of the proposed research.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
新兴的物联网 (IoT) 在云和边缘计算技术的支持下,正在连接越来越多的智能设备,并支持各种异构物联网应用。特别是,边缘或雾计算技术将显着有利于延迟敏感、带宽/数据密集型或需要更紧密智能的物联网应用。然而,对于有效的边缘物联网资源分配,由于以下要求和限制而存在重大挑战:1)大量物联网设备可以运行具有各种服务质量(QoS)要求和不同优先级的异构应用程序的需求方; 2)边缘云需要在地理空间分布点动态、优化分配有限的多维资源(CPU、存储和带宽)的供应方。该项目的目标是通过使用深度在线学习设计和开发名为 DeepEdge 的新边缘物联网框架来应对这些挑战,该框架将资源分配给异构物联网应用程序和动态物联网设备,以最大限度地提高用户的体验质量 (QoE)。拟议的研究将增进知识并从根本上改变未来边缘计算系统在支持异构和动态物联网应用方面的工作方式。变革性的研究成果将通过廉价且有效的物联网应用交付使用户和社会受益,并有助于应对支持新兴物联网设备和应用的重要社会挑战。该项目还将广泛涉及和影响 K-12 计算机科学领域代表性不足的群体和女学生,并为各个级别的学生发展强有力的研究和教育一体化。本研究的目标是开发框架、模型和算法,以便在边缘云上有效交付异构物联网应用,并为用户提供高质量的 QoE。更具体地说,该项目将产生: i) 一个新的 QoE 模型,用于量化用户满意度及其相关因素,包括多个应用程序 QoS 要求和应用程序优先级; ii)一种新的基于深度机器学习的两阶段资源分配方案,该方案将根据边缘云的可用资源调整应用程序的QoS要求并保持应用程序的优先级,并以用户最大化为目标智能地联合分配通信和计算资源体验质量; iii) 一种新颖的深度 Q 学习方案,该方案将动态选择最合适的边缘节点来处理多个应用任务,以优化任务执行延迟; iv) 硬件和软件测试台实施,以验证和评估拟议研究的有效性、效率和实用性。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优势和更广泛的影响进行评估,被认为值得支持审查标准。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
I-HARF: Intelligent and Hierarchical Framework for Adaptive Resource Facilitation in Edge-IoT Systems
  • DOI:
    10.1109/jiot.2022.3151667
  • 发表时间:
    2023-03
  • 期刊:
  • 影响因子:
    10.6
  • 作者:
    Ismail Alqerm;Jianli Pan
  • 通讯作者:
    Ismail Alqerm;Jianli Pan
DeepEdge: A New QoE-Based Resource Allocation Framework Using Deep Reinforcement Learning for Future Heterogeneous Edge-IoT Applications
Enhanced Online Q-Learning Scheme for Resource Allocation with Maximum Utility and Fairness in Edge-IoT Networks
ORCA: Enabling an Owner-Centric and Data-Driven Management Paradigm for Future Heterogeneous Edge-IoT Systems
ORCA:为未来异构边缘物联网系统实现以所有者为中心、数据驱动的管理范式
  • DOI:
    10.1109/mcom.001.2000237
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    11.2
  • 作者:
    Pan, Jianli;Wang, Jianyu;AlQerm, Ismail;Liu, Yuanni;Yang, Zhicheng
  • 通讯作者:
    Yang, Zhicheng
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jianli Pan其他文献

中国翔安海底隧道的地质勘查及软弱破碎围岩的开挖特点
Application delivery in multi-cloud environments using software defined networking
使用软件定义网络在多云环境中交付应用程序
  • DOI:
    10.1016/j.comnet.2013.12.005
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S. Paul;R. Jain;M. Samaka;Jianli Pan
  • 通讯作者:
    Jianli Pan
Toward an Energy-Proportional Building prospect: Evaluation and analysis of the energy consumption in a green building testbed
迈向节能建筑前景:绿色建筑试验台能耗评估与分析
  • DOI:
    10.1109/energytech.2013.6645358
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jianli Pan;R. Jain;P. Biswas;Weining Wang;Sateesh Addepalli;S. Paul
  • 通讯作者:
    S. Paul
Enhanced Evaluation of the Interdomain Routing System for Balanced Routing Scalability and New Internet Architecture Deployments
增强域间路由系统平衡路由可扩展性和新互联网架构部署的评估
  • DOI:
    10.1109/jsyst.2013.2281129
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    4.4
  • 作者:
    Jianli Pan;R. Jain;S. Paul
  • 通讯作者:
    S. Paul
Breathing Disorder Detection Using Wearable Electrocardiogram And Oxygen Saturation
使用可穿戴心电图和血氧饱和度检测呼吸障碍

Jianli Pan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jianli Pan', 18)}}的其他基金

CNS Core: Small: DeepEdge: QoE-based Resource Allocation for Future Heterogeneous and Dynamic Edge-IoT Applications
CNS 核心:小型:DeepEdge:面向未来异构和动态边缘物联网应用的基于 QoE 的资源分配
  • 批准号:
    2246698
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant

相似国自然基金

核受体RORgamma调控肿瘤微生态促进非小细胞肺癌恶性进展的作用机制研究
  • 批准号:
    82373186
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
肾去交感神经术促进下丘脑室旁核小胶质细胞M2型极化减轻心衰损伤的机制研究
  • 批准号:
    82370387
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
基于NRF2调控KPNB1促进PD-L1核转位介导非小细胞肺癌免疫治疗耐药的机制研究
  • 批准号:
    82303969
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
前丘脑室旁核小胶质细胞经由TNF-α参与强迫进食行为的作用及机制研究
  • 批准号:
    82301521
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
小胶质细胞调控外侧隔核-腹侧被盖区神经环路介导社交奖赏障碍的机制研究
  • 批准号:
    82304474
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CNS Core: Small: Core Scheduling Techniques and Programming Abstractions for Scalable Serverless Edge Computing Engine
CNS Core:小型:可扩展无服务器边缘计算引擎的核心调度技术和编程抽象
  • 批准号:
    2322919
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
CNS Core: Small: Network Wide Sensing by Leveraging Cellular Communication Networks
CNS 核心:小型:利用蜂窝通信网络进行全网络传感
  • 批准号:
    2343469
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
CNS Core: Small: Intelligent Fault Injection to Expose and Reproduce Production-Grade Bugs in Cloud Systems
CNS 核心:小型:智能故障注入以暴露和重现云系统中的生产级错误
  • 批准号:
    2317698
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
CNS Core: Small: Repurposing Smartphones to Minimize Carbon
CNS 核心:小型:重新利用智能手机以最大限度地减少碳排放
  • 批准号:
    2233894
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Small: A Compilation System for Mapping Deep Learning Models to Tensorized Instructions (DELITE)
合作研究:CNS Core:Small:将深度学习模型映射到张量化指令的编译系统(DELITE)
  • 批准号:
    2230945
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了