RI: AF: Small: Optimizing probabilities for learning: sampling meets optimization
RI:AF:小:优化学习概率:采样满足优化
基本信息
- 批准号:1909365
- 负责人:
- 金额:$ 45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-08-01 至 2023-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Methods for large-scale machine learning and artificial intelligence (AI) have had major impacts on the world over the past decade, including in both industrial and scientific contexts. These spectacular successes are driven by a combination of the availability of massive datasets, and appropriate models and algorithms for extracting useful information and insights from these datasets. This research project aims to advance the methodology and understanding of algorithms for large-scale machine learning and AI by exploiting the interplay between sampling and optimization. In particular, two grand challenges are addressed: first, the tools and insights of optimization theory can develop more effective design and analysis techniques for sampling methods; second, these techniques can be used to design and analyze optimization methods for problems such as those that arise in deep learning. Successful research outcomes of this project are likely to increase the understanding of methods used for sampling and for optimization, and to facilitate their principled design. Successful outcomes have a significant potential for practical impact in the large and growing set of applications where large-scale sampling and optimization methods are used, including computer vision, speech recognition, and self-driving cars. The research will support the development of graduate students, will be disseminated through large graduate courses at Berkeley and their web-based course materials, and has the potential to benefit the broader community through the application of the methods studied in deployed AI systems.The project has three main technical directions. First, it aims to identify the inherent difficulty of sampling problems by proving lower bounds. Second, it aims to produce analysis tools and design methodologies for sampling algorithms based on a certain family of stochastic differential equations known as a Langevin diffusion. This will enable the development of sampling algorithms with performance guarantees. Third, it will use the viewpoint of sampling techniques to analyze and design stochastic gradient methods for nonconvex optimization problems, such as the optimization of parameters in deep neural networks. An additional outcome of the project will be the organization of a workshop on the topic of the interface between sampling and optimization.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
大规模机器学习和人工智能(AI)的方法在过去十年中对世界产生了重大影响,包括在工业和科学环境中。 这些壮观的成功是由大量数据集的可用性以及从这些数据集中提取有用信息和见解的适当模型和算法的组合驱动的。 该研究项目旨在通过利用采样和优化之间的相互作用来推进大规模机器学习算法和AI算法的理解。特别是,解决了两个宏伟的挑战:首先,优化理论的工具和见解可以为抽样方法开发更有效的设计和分析技术。其次,这些技术可用于设计和分析针对深度学习中出现的问题的优化方法。 该项目的成功研究结果可能会增加对用于采样和优化方法的理解,并促进其原则性设计。成功的结果在使用大规模采样和优化方法的大型应用程序集中具有重要的实际影响,包括计算机视觉,语音识别和自动驾驶汽车。 这项研究将支持研究生的发展,将通过伯克利及其基于网络的课程材料的大型研究生课程进行传播,并有可能通过在部署的AI系统中研究的方法来使更广泛的社区受益。该项目具有三个主要的技术方向。首先,它旨在通过证明下限来确定采样问题的固有难度。 其次,它旨在生产基于某些随机微分方程家族的分析工具和设计方法,用于采样算法,称为langevin扩散。这将使使用性能保证的采样算法的开发。 第三,它将使用采样技术的观点来分析和设计非convex优化问题的随机梯度方法,例如深度神经网络中参数的优化。该项目的另一个结果将是组织有关采样和优化之间接口主题的研讨会。该奖项反映了NSF的法定任务,并使用基金会的知识分子优点和更广泛的影响审查标准,认为值得通过评估来获得支持。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On Approximate Thompson Sampling with Langevin Algorithms
- DOI:
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Eric V. Mazumdar;Aldo Pacchiano;Yi-An Ma;Michael I. Jordan;P. Bartlett
- 通讯作者:Eric V. Mazumdar;Aldo Pacchiano;Yi-An Ma;Michael I. Jordan;P. Bartlett
Stabilizing Q-learning with Linear Architectures for Provably Efficient Learning
- DOI:10.48550/arxiv.2206.00796
- 发表时间:2022-06
- 期刊:
- 影响因子:0
- 作者:A. Zanette;M. Wainwright
- 通讯作者:A. Zanette;M. Wainwright
Improved bounds for discretization of Langevin diffusions: Near-optimal rates without convexity
- DOI:10.3150/21-bej1343
- 发表时间:2019-07
- 期刊:
- 影响因子:1.5
- 作者:Wenlong Mou;Nicolas Flammarion;M. Wainwright;P. Bartlett
- 通讯作者:Wenlong Mou;Nicolas Flammarion;M. Wainwright;P. Bartlett
High-Order Langevin Diffusion Yields an Accelerated MCMC Algorithm
- DOI:
- 发表时间:2019-08
- 期刊:
- 影响因子:0
- 作者:Wenlong Mou;Yian Ma;Yi-An Ma;M. Wainwright;P. Bartlett;Michael I. Jordan
- 通讯作者:Wenlong Mou;Yian Ma;Yi-An Ma;M. Wainwright;P. Bartlett;Michael I. Jordan
Stochastic Gradient and Langevin Processes
- DOI:
- 发表时间:2019-07
- 期刊:
- 影响因子:0
- 作者:Xiang Cheng;Dong Yin;P. Bartlett;Michael I. Jordan
- 通讯作者:Xiang Cheng;Dong Yin;P. Bartlett;Michael I. Jordan
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Peter Bartlett其他文献
Mathematical Foundations of Machine Learning
机器学习的数学基础
- DOI:
10.4171/owr/2021/15 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Peter Bartlett;Cristina Butucea;Johannes Schmidt - 通讯作者:
Johannes Schmidt
Minimax Fixed-Design Linear Regression
极小极大固定设计线性回归
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Peter Bartlett;Wouter Koolen;Alan Malek;Eiji Takimoto;Manfred Warmuth - 通讯作者:
Manfred Warmuth
Articulating future directions of law reform for compulsory mental health admission and treatment in Hong Kong
- DOI:
10.1016/j.ijlp.2019.101513 - 发表时间:
2020-01-01 - 期刊:
- 影响因子:
- 作者:
Daisy Cheung;Michael Dunn;Elizabeth Fistein;Peter Bartlett;John McMillan;Carole J. Petersen - 通讯作者:
Carole J. Petersen
A review of the literature on the historical development of community mental health services in the United Kingdom.
英国社区精神卫生服务历史发展文献综述。
- DOI:
10.1111/j.1365-2850.2007.01218.x - 发表时间:
2008 - 期刊:
- 影响因子:2.7
- 作者:
Nicola Wright;Peter Bartlett;P. Callaghan - 通讯作者:
P. Callaghan
The United Nations Convention on the Rights of Persons with Disabilities and the future of mental health law
- DOI:
10.1016/j.mppsy.2009.09.012 - 发表时间:
2009-12-01 - 期刊:
- 影响因子:
- 作者:
Peter Bartlett - 通讯作者:
Peter Bartlett
Peter Bartlett的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Peter Bartlett', 18)}}的其他基金
Collaboration on the Theoretical Foundations of Deep Learning
深度学习理论基础的合作
- 批准号:
2031883 - 财政年份:2020
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
RI: AF: Small: Deep Learning Theory
RI:AF:小:深度学习理论
- 批准号:
1619362 - 财政年份:2016
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
MCS: AF: Small: Algorithms for Large Scale Prediction Problems
MCS:AF:小型:大规模预测问题的算法
- 批准号:
1115788 - 财政年份:2011
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Regularization Methods for Online Learning
在线学习的正则化方法
- 批准号:
0830410 - 财政年份:2008
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Statistical Methods for Prediction of Individual Sequences
预测个体序列的统计方法
- 批准号:
0707060 - 财政年份:2007
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
MSPA-MCS: Collaborative Research: Statistical Learning Methods for Complex Decision Problems in Natural Language Processing
MSPA-MCS:协作研究:自然语言处理中复杂决策问题的统计学习方法
- 批准号:
0434383 - 财政年份:2004
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
相似国自然基金
AF9通过ARRB2-MRGPRB2介导肠固有肥大细胞活化促进重症急性胰腺炎发生MOF的研究
- 批准号:82300739
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
H2S介导剪接因子BraU2AF65a的S-巯基化修饰促进大白菜开花的分子机制
- 批准号:32372727
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
剪接因子U2AF1突变在急性髓系白血病原发耐药中的机制研究
- 批准号:82370157
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
线粒体活性氧介导的胎盘早衰在孕期双酚AF暴露致婴幼儿神经发育迟缓中的作用
- 批准号:82304160
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
U2AF2-circMMP1调控能量代谢促进结直肠癌肝转移的分子机制
- 批准号:82303789
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
AF:RI:Small: Fairness in allocation and machine learning problems: algorithms and solution concepts
AF:RI:Small:分配公平性和机器学习问题:算法和解决方案概念
- 批准号:
2334461 - 财政年份:2024
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Collaborative Research: RI: AF: Small: Long-Term Impact of Fair Machine Learning under Strategic Individual Behavior
合作研究:RI:AF:小:战略性个人行为下公平机器学习的长期影响
- 批准号:
2202699 - 财政年份:2022
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Collaborative Research: RI: AF: Small: Long-Term Impact of Fair Machine Learning under Strategic Individual Behavior
合作研究:RI:AF:小:战略性个人行为下公平机器学习的长期影响
- 批准号:
2202700 - 财政年份:2022
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Collaborative Research: RI: AF: Small: Long-Term Impact of Fair Machine Learning under Strategic Individual Behavior
合作研究:RI:AF:小:战略性个人行为下公平机器学习的长期影响
- 批准号:
2301599 - 财政年份:2022
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
AF: RI: Small: Computationally Efficient Approximation of Stationary Points in Convex and Min-Max Optimization
AF:RI:小:凸和最小-最大优化中驻点的计算高效近似
- 批准号:
2007757 - 财政年份:2020
- 资助金额:
$ 45万 - 项目类别:
Standard Grant