CNS Core: Small: Ultra-Low-Complexity Switching Algorithms for Scalable High Network Performance

CNS 核心:小型:超低复杂度交换算法,实现可扩展的高网络性能

基本信息

  • 批准号:
    1909048
  • 负责人:
  • 金额:
    $ 43.27万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-10-01 至 2022-09-30
  • 项目状态:
    已结题

项目摘要

The volumes of network traffic across the Internet and in data-centers continue to grow relentlessly, thanks to existing and emerging data-intensive applications. To transport and "direct" this massive amount of traffic to its respective destinations, network switches capable of connecting a large number of input-output ports (these switches are called high-radix) and operating at very high speeds are badly needed. A switch has to compute, for each time slot (say 10 nanoseconds in duration), a matching that specifies the set of simultaneous connections through the switch between the input ports and the output ports, each of which allows for the transmission of a packet between the corresponding port pair and out the switch toward its destination. A major challenge in designing fast high-radix switches is to develop algorithms that can compute high-quality matchings within the duration of a time slot, even when the switch size (radix) N is large. However, existing matching (switching) algorithms are not computationally efficient nor scalable enough for future fast high-radix switches. This project will bridge this gap via investigating next-generation matching algorithms that run much faster yet have excellent throughput and delay performances. This project will also develop new mathematical techniques that are necessary for analyzing the throughput guarantees of such algorithms.This project will build on and extend three recent research breakthroughs made by the principal investigator and his students. The first breakthrough is an add-on algorithm called Queue-Proportional Sampling (QPS) that can be used to boost the performance of existing matching algorithms, such as SERENA and iSLIP, at virtually no additional computation cost. The second breakthrough is QPS-r, a distributed matching algorithm that runs a constant r rounds (iterations) of QPS to compute a matching. In just a single iteration (i.e., when r = 1), QPS-1 outputs a matching that is in general not even maximal, yet has exactly the same quality as maximal matchings, which are much more expensive to compute. The third breakthrough is SERENADE, which effectively parallelizes SERENA and has a low computational complexity of O(log N) per port. This project will develop among others Small Batch QPS (SB-QPS), a batch matching algorithm that builds on QPS and QPS-r and appears to have all the desired properties of next-generation matching algorithms. This project will also develop new mathematical techniques, within the framework of Lyapunov stability theory, for determining and proving the throughput guarantees of several existing or next-generation matching algorithms such as QPS-iSLIP, QPS-r, SB-QPS, and O-SERENADE. As an important educational component of this project, the PI is writing the second edition of a textbook on a topic that contains the design and analysis of such algorithms as a subtopic. The PI will work closely with leading networking solution providers, such as Cisco, to facilitate the transfer of technology. The PI will further broaden the participation of under-represented groups, such as women and minority, in research and higher education.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
由于现有和新兴的数据密集型应用程序,整个Internet和数据中心的网络流量量继续不断增长。 为了运输和“直接”到各自目的地的大量流量,网络交换机能够连接大量输入输出端口(这些交换机称为高radix)并在非常高速的情况下运行。 一个开关必须在每个时间插槽中计算(例如持续时间10纳秒),该匹配指定通过输入端口和输出端口之间的开关指定同时连接的集合,每个连接允许在相应的端口对之间传输数据包,并朝向其目的地。 设计快速高音开关的主要挑战是开发算法,即使开关大小(radix)n很大,可以在时间插槽的时间内计算高质量匹配。 但是,现有的匹配(开关)算法在计算上不可效率不足,对于将来的快速高音开关而言。 该项目将通过调查下一代匹配算法来弥合这一差距,这些算法的运行速度更快却具有出色的吞吐量和延迟性能。 该项目还将开发出新的数学技术,这些技术对于分析此类算法的吞吐量保证所需的必要条件。该项目将在主要研究人员及其学生的最新研究基础上进行并扩展三个最新的研究突破。 第一个突破是一种称为Queue-Portortional采样(QP)的附加算法,可用于提高现有匹配算法的性能,例如Serena和Islip,几乎没有其他计算成本。 第二个突破是QPS-R,这是一种分布式匹配算法,该算法运行QPS的常数R弹性(迭代)以计算匹配。 在仅一次迭代(即,当r = 1时)中,QPS-1输出的匹配通常不是最大的,但具有与最大匹配的质量完全相同,该匹配的计算要昂贵得多。第三个突破是小夜曲,有效地使Serena并行,并且每个端口的计算复杂性低。 该项目将开发出小批量QP(SB-QP),这是一种批量匹配算法,该算法构建在QPS和QPS-R上,并且似乎具有下一代匹配算法的所有所需属性。 该项目还将在Lyapunov稳定理论的框架内开发新的数学技术,以确定和证明几种现有或下一代匹配算法的吞吐量保证,例如QPS-ISLIP,QPS-RISSIP,QPS-R,SB-QPS和O-Serenade。 作为该项目的重要教育组成部分,PI正在撰写第二版教科书,内容涉及一个包含该算法的设计和分析,例如该算法。 PI将与领先的网络解决方案提供商(例如Cisco)紧密合作,以促进技术的转移。 PI将进一步扩大代表性不足的群体(例如妇女和少数群体)在研究和高等教育中的参与。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子和更广泛影响的评估评估标准来通过评估来支持的。

项目成果

期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Space- and Computationally-Efficient Set Reconciliation via Parity Bitmap Sketch (PBS)
  • DOI:
    10.14778/3436905.3436906
  • 发表时间:
    2020-07
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Long Gong;Ziheng Liu;Liang Liu;Jun Xu;Mitsunori Ogihara;Tong Yang
  • 通讯作者:
    Long Gong;Ziheng Liu;Liang Liu;Jun Xu;Mitsunori Ogihara;Tong Yang
Jump-Starting Multivariate Time Series Anomaly Detection for Online Service Systems
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Minghua Ma;Shenglin Zhang;Junjie Chen;Jim Xu;Haozhe Li;Yongliang Lin;Xiaohui Nie;Bo Zhou;Yong Wang;Dan Pei
  • 通讯作者:
    Minghua Ma;Shenglin Zhang;Junjie Chen;Jim Xu;Haozhe Li;Yongliang Lin;Xiaohui Nie;Bo Zhou;Yong Wang;Dan Pei
LESS: A Matrix Split and Balance Algorithm for Parallel Circuit (Optical) or Hybrid Data Center Switching and More
LESS:用于并行电路(光纤)或混合数据中心交换等的矩阵拆分和平衡算法
  • DOI:
    10.1145/3344341.3368807
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Liu, Liang;Xu, Jun;Singh, Mohit
  • 通讯作者:
    Singh, Mohit
ONe Index for All Kernels (ONIAK): A Zero Re-Indexing LSH Solution to ANNS-ALT (After Linear Transformation)
ONe Index for All Kernels (ONIAK):ANNS-ALT 的零重新索引 LSH 解决方案(线性变换后)
SERENADE: A Parallel Iterative Algorithm for Crossbar Scheduling in Input-Queued Switches
SERENADE:输入队列交换机中交叉开关调度的并行迭代算法
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jun Xu其他文献

The role of biasing electric field in intrinsic resistive switching characteristics of highly silicon-rich a-SiOx films1
偏置电场在高富硅 a-SiOx 薄膜本征电阻开关特性中的作用1
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yuefei Wang;Kunji Chen;Xin;Zhonghui Fang;Wei Li;Jun Xu
  • 通讯作者:
    Jun Xu
Free-standing reduced graphene oxide (rGO) membrane for salt-rejecting solar desalination via size effect
通过尺寸效应用于脱盐太阳能海水淡化的独立式还原氧化石墨烯(rGO)膜
  • DOI:
    10.1515/nanoph-2020-0396
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    7.5
  • 作者:
    Pengyu Zhuang;Hanyu Fu;Ning Xu;Bo Li;Jun Xu;Lin Zhou
  • 通讯作者:
    Lin Zhou
Cryptanalysis of elliptic curve hidden number problem from PKC 2017
PKC 2017 椭圆曲线隐数问题的密码分析
  • DOI:
    10.1007/s10623-019-00685-y
  • 发表时间:
    2019-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jun Xu;Lei Hu;Santanu Sarkar
  • 通讯作者:
    Santanu Sarkar
Exploring the intercalation chemistry of layered yttrium hydroxides by 13C solid-state NMR spectroscopy
通过 13C 固态核磁共振波谱探索层状氢氧化钇的插层化学
  • DOI:
    10.1016/j.mrl.2022.03.001
  • 发表时间:
    2022-03
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yanxin Liu;Shijia Jiang;Jun Xu
  • 通讯作者:
    Jun Xu
Association of C(-106)T polymorphism in aldose reductase gene with diabetic retinopathy in Chinese patients with type 2 diabetes mellitus.
醛糖还原酶基因C(-106)T多态性与中国2型糖尿病患者糖尿病视网膜病变的关系

Jun Xu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jun Xu', 18)}}的其他基金

CAREER: Fuzzing Large Software: Principles, Methods, and Tools
职业:模糊大型软件:原理、方法和工具
  • 批准号:
    2340198
  • 财政年份:
    2024
  • 资助金额:
    $ 43.27万
  • 项目类别:
    Continuing Grant
Travel: NSF Student Travel Grant for 2023 ACM Conference on Computer and Communications Security (CCS)
旅行:2023 年 ACM 计算机和通信安全 (CCS) 会议 NSF 学生旅行补助金
  • 批准号:
    2341773
  • 财政年份:
    2023
  • 资助金额:
    $ 43.27万
  • 项目类别:
    Standard Grant
CICI: TCR: Prompt, Reliable, and Safe Security Update for Cyberinfrastructure
CICI:TCR:网络基础设施的及时、可靠和安全的安全更新
  • 批准号:
    2319880
  • 财政年份:
    2023
  • 资助金额:
    $ 43.27万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: CORE: Medium: Rethinking Fuzzing for Security
协作研究:SaTC:核心:中:重新思考安全性模糊测试
  • 批准号:
    2213727
  • 财政年份:
    2022
  • 资助金额:
    $ 43.27万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: CORE: Medium: Rethinking Fuzzing for Security
协作研究:SaTC:核心:中:重新思考安全性模糊测试
  • 批准号:
    2031377
  • 财政年份:
    2020
  • 资助金额:
    $ 43.27万
  • 项目类别:
    Standard Grant
CNS Core: Small: Towards Hybrid Data Center Switching Using Partially Reconfigurable Circuit Switch
CNS 核心:小型:使用部分可重构电路交换机实现混合数据中心交换
  • 批准号:
    2007006
  • 财政年份:
    2020
  • 资助金额:
    $ 43.27万
  • 项目类别:
    Standard Grant
NeTS: Small: Collaborative Research: Research into Worst-Case Large Deviation Theory for Network Algorithmics
NeTS:小型:协作研究:网络算法最坏情况大偏差理论的研究
  • 批准号:
    1423182
  • 财政年份:
    2014
  • 资助金额:
    $ 43.27万
  • 项目类别:
    Standard Grant
NeTS: Medium: Collaborative Research: Towards Building Time Capsule for Online Social Activities
NeTS:媒介:协作研究:为在线社交活动构建时间胶囊
  • 批准号:
    1302197
  • 财政年份:
    2013
  • 资助金额:
    $ 43.27万
  • 项目类别:
    Standard Grant
NeTS: Small: Collaborative Research: Towards Principled Network Troubleshooting via Efficient Packet Stream Processing
NetS:小型:协作研究:通过高效的数据包流处理实现有原则的网络故障排除
  • 批准号:
    1218092
  • 财政年份:
    2012
  • 资助金额:
    $ 43.27万
  • 项目类别:
    Standard Grant
SBIR Phase I: Nanocomposites for Electronic Packaging
SBIR 第一阶段:用于电子封装的纳米复合材料
  • 批准号:
    0912544
  • 财政年份:
    2009
  • 资助金额:
    $ 43.27万
  • 项目类别:
    Standard Grant

相似国自然基金

基于NRF2调控KPNB1促进PD-L1核转位介导非小细胞肺癌免疫治疗耐药的机制研究
  • 批准号:
    82303969
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
小胶质细胞调控外侧隔核-腹侧被盖区神经环路介导社交奖赏障碍的机制研究
  • 批准号:
    82304474
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
肾去交感神经术促进下丘脑室旁核小胶质细胞M2型极化减轻心衰损伤的机制研究
  • 批准号:
    82370387
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
空间邻近标记技术研究莱茵衣藻蛋白核小管与碳浓缩机制的潜在关系
  • 批准号:
    32300220
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
polyG蛋白聚集体诱导小胶质细胞活化在神经元核内包涵体病中的作用及机制研究
  • 批准号:
    82301603
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CNS Core: Small: Core Scheduling Techniques and Programming Abstractions for Scalable Serverless Edge Computing Engine
CNS Core:小型:可扩展无服务器边缘计算引擎的核心调度技术和编程抽象
  • 批准号:
    2322919
  • 财政年份:
    2024
  • 资助金额:
    $ 43.27万
  • 项目类别:
    Standard Grant
CNS Core: Small: Network Wide Sensing by Leveraging Cellular Communication Networks
CNS 核心:小型:利用蜂窝通信网络进行全网络传感
  • 批准号:
    2343469
  • 财政年份:
    2024
  • 资助金额:
    $ 43.27万
  • 项目类别:
    Standard Grant
CNS Core: Small: Intelligent Fault Injection to Expose and Reproduce Production-Grade Bugs in Cloud Systems
CNS 核心:小型:智能故障注入以暴露和重现云系统中的生产级错误
  • 批准号:
    2317698
  • 财政年份:
    2023
  • 资助金额:
    $ 43.27万
  • 项目类别:
    Standard Grant
CNS Core: Small: Repurposing Smartphones to Minimize Carbon
CNS 核心:小型:重新利用智能手机以最大限度地减少碳排放
  • 批准号:
    2233894
  • 财政年份:
    2023
  • 资助金额:
    $ 43.27万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Small: A Compilation System for Mapping Deep Learning Models to Tensorized Instructions (DELITE)
合作研究:CNS Core:Small:将深度学习模型映射到张量化指令的编译系统(DELITE)
  • 批准号:
    2230945
  • 财政年份:
    2023
  • 资助金额:
    $ 43.27万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了