S&AS:INT:Learning and Planning for Dynamic Locomotion
S
基本信息
- 批准号:1849343
- 负责人:
- 金额:$ 82万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-02-01 至 2025-01-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Despite years of work on robot locomotion, we still do not have robots that can reliably and flexibly move around in homes, workspaces, and natural terrain. For many of these environments, legged robots, as opposed to wheel-based robots, appear to be the most viable option for achieving the desired level of locomotion autonomy. Prior work has produced ATRIAS, a two-legged robot, which was designed to replicate the dynamic properties of human and animal legs, and Cassie, which retains this dynamics-first approach but improves upon ATRIAS by adding steering capability and ankles, along with engineering improvements. Compared to conventional robot-leg designs, the designs of ATRIAS and Cassie carefully incorporate "passive dynamics" into the mechanism, essentially bringing the dynamic behavior of the hardware into partnership with the software control system. This approach has the potential to exhibit locomotion capabilities much closer to humans. However, the flexibility and "springiness" of these human-like legs creates new challenges for locomotion control. While ATRIAS and Cassie are currently able to walk and run outdoors over moderate terrain using basic balance control methods, the methods are still not able to support more complex locomotion activities, such as navigating stairs or rocky terrain. The proposed research will develop new control methods for dynamic legged locomotion, which will enable robots such as ATRIAS and Cassie to effectively move around in our homes, workplaces, and other complex natural environments with much more flexibility, while using much less energy. This will significantly expand on the application domains for which autonomous robot locomotion can be applied. The primary technical contribution of the project will be twofold: First, the research will study machine learning techniques to dramatically improve the existing hand-crafted controllers for dynamic locomotion, and create a rich action space composed of behavior policies that produce robust walking, standing, running, and leaping behaviors with various speeds, step/jump heights, and other characteristics. This action space provides an expressive and compact means of controlling the motion of a legged robot, greatly surpassing direct torque control in expressiveness while also dramatically reducing the dimensionality of the problem. Second, the research will design a fast and efficient sampling-based planning architecture, which also uses machine learning to speed up the planning process to allow for real-time fulfillment of movement goals while avoiding collisions and falls. This work adds new knowledge in research on legged locomotion planning by considering obstacle planning and robot dynamics as an integrated problem. Most prior work attempts to decouple the two pieces, for example by using a planner to find footholds in kinematic space and handing them to a dynamics controller that tries to maintain balance as the robot follows the kinematic goals. For human-like performance in two-legged locomotion, the project considers foothold choice to be intrinsically linked to robot dynamics, and considers foot placement in an integrated way.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
尽管在机器人运动方面进行了多年的研究,但我们仍然没有能够在家庭、工作场所和自然地形中可靠、灵活地移动的机器人。对于许多这样的环境,与轮式机器人相比,腿式机器人似乎是实现所需的自主运动水平的最可行的选择。之前的工作已经产生了 ATRIAS,一种双足机器人,旨在复制人类和动物腿部的动态特性,以及 Cassie,它保留了这种动力学优先的方法,但通过增加转向能力和脚踝以及工程设计对 ATRIAS 进行了改进改进。与传统的机器人腿设计相比,ATRIAS 和 Cassie 的设计仔细地将“被动动力学”融入到机构中,本质上将硬件的动态行为与软件控制系统结合起来。这种方法有可能展现出更接近人类的运动能力。然而,这些类人腿的灵活性和“弹性”给运动控制带来了新的挑战。虽然 ATRIAS 和 Cassie 目前能够使用基本的平衡控制方法在中等地形的户外行走和跑步,但这些方法仍然无法支持更复杂的运动活动,例如在楼梯或岩石地形中导航。拟议的研究将开发用于动态腿部运动的新控制方法,这将使 ATRIAS 和 Cassie 等机器人能够在我们的家庭、工作场所和其他复杂的自然环境中有效地移动,更加灵活,同时使用更少的能源。这将显着扩展自主机器人运动的应用领域。该项目的主要技术贡献将有两个:首先,该研究将研究机器学习技术,以显着改进现有的手工制作的动态运动控制器,并创建一个由行为策略组成的丰富的动作空间,这些行为策略可以产生稳健的行走、站立、具有不同速度、步/跳跃高度和其他特征的跑步和跳跃行为。该动作空间提供了一种富有表现力且紧凑的方式来控制有腿机器人的运动,在表现力上大大超越了直接扭矩控制,同时也大大降低了问题的维度。其次,该研究将设计一种快速高效的基于采样的规划架构,该架构还使用机器学习来加速规划过程,以便实时实现运动目标,同时避免碰撞和跌倒。这项工作通过将障碍物规划和机器人动力学视为一个综合问题,为腿式运动规划的研究增加了新的知识。大多数先前的工作试图将这两部分解耦,例如,通过使用规划器在运动学空间中找到立足点,并将它们交给动态控制器,该控制器试图在机器人遵循运动学目标时保持平衡。对于两足运动中的类人表现,该项目认为立足点选择与机器人动力学有内在联系,并以综合方式考虑足部放置。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准。
项目成果
期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Learning Memory-Based Control for Human-Scale Bipedal Locomotion
学习基于记忆的人体规模双足运动控制
- DOI:10.15607/rss.2020.xvi.031
- 发表时间:2020-06-03
- 期刊:
- 影响因子:0
- 作者:J. Siekmann;S. Valluri;Jeremy Dao;Lorenzo Bermillo;Helei Duan;Alan Fern;J. Hurst
- 通讯作者:J. Hurst
Learning Dynamic Bipedal Walking Across Stepping Stones
学习动态双足行走踏脚石
- DOI:10.1109/iros47612.2022.9981884
- 发表时间:2022-05-03
- 期刊:
- 影响因子:0
- 作者:Helei Duan;A. Malik;M. S. Gadde;Jeremy Dao;Alan Fern;J. Hurst
- 通讯作者:J. Hurst
Optimizing Bipedal Locomotion for The 100m Dash With Comparison to Human Running
与人类跑步相比,优化 100m 短跑的双足运动
- DOI:10.1109/icra48891.2023.10160436
- 发表时间:2023-05
- 期刊:
- 影响因子:0
- 作者:Crowley, Devin;Dao, Jeremy;Duan, Helei;Green, Kevin;Hurst, Jonathan;Fern, Alan
- 通讯作者:Fern, Alan
The Choice Function Framework for Online Policy Improvement
在线政策改进的选择函数框架
- DOI:10.1609/aaai.v34i06.6578
- 发表时间:2020-06
- 期刊:
- 影响因子:0
- 作者:Issakkimuthu, Murugeswari;Fern, Alan;Tadepalli, Prasad
- 通讯作者:Tadepalli, Prasad
Planning for the Unexpected: Explicitly Optimizing Motions for Ground Uncertainty in Running
为意外情况做好规划:针对跑步中的地面不确定性明确优化运动
- DOI:
- 发表时间:2020-01
- 期刊:
- 影响因子:0
- 作者:Green, Kevin;Hatton, Ross;Hurst, Jonathan
- 通讯作者:Hurst, Jonathan
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alan Fern其他文献
Out-of-Distribution Dynamics Detection: RL-Relevant Benchmarks and Results
分布外动态检测:RL 相关基准和结果
- DOI:
- 发表时间:
2021-07-11 - 期刊:
- 影响因子:0
- 作者:
Mohamad H. Danesh;Alan Fern - 通讯作者:
Alan Fern
Lower Bounding Klondike Solitaire with Monte-Carlo Planning
蒙特卡洛规划下界克朗代克纸牌
- DOI:
10.1609/icaps.v19i1.13363 - 发表时间:
2009-09-19 - 期刊:
- 影响因子:0
- 作者:
Ronald V. Bjarnason;Alan Fern;Prasad Tadepalli - 通讯作者:
Prasad Tadepalli
A PENALTY‐LOGIC SIMPLE‐TRANSITION MODEL FOR STRUCTURED SEQUENCES
结构化序列的惩罚——逻辑简单——转换模型
- DOI:
10.1111/j.1467-8640.2009.00346.x - 发表时间:
2009-11-01 - 期刊:
- 影响因子:2.8
- 作者:
Alan Fern - 通讯作者:
Alan Fern
Revisiting Output Coding for Sequential Supervised Learning
重新审视顺序监督学习的输出编码
- DOI:
- 发表时间:
2007-01-06 - 期刊:
- 影响因子:0
- 作者:
Guohua Hao;Alan Fern - 通讯作者:
Alan Fern
Incorporating Domain Models into Bayesian Optimization for RL
将域模型纳入强化学习的贝叶斯优化中
- DOI:
10.1007/978-3-642-15939-8_30 - 发表时间:
2010-09-20 - 期刊:
- 影响因子:0
- 作者:
Aaron Wilson;Alan Fern;Prasad Tadepalli - 通讯作者:
Prasad Tadepalli
Alan Fern的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alan Fern', 18)}}的其他基金
Collaborative Research: CISE: Large: Executing Natural Instructions in Realistic Uncertain Worlds
合作研究:CISE:大型:在现实的不确定世界中执行自然指令
- 批准号:
2321851 - 财政年份:2023
- 资助金额:
$ 82万 - 项目类别:
Continuing Grant
Student Support for the 2020 International Conference on Automated Planning and Scheduling
2020 年自动规划与调度国际会议的学生支持
- 批准号:
2017913 - 财政年份:2020
- 资助金额:
$ 82万 - 项目类别:
Standard Grant
RI: Small: Speedup Learning for Online Planning Under Uncertainty
RI:小:加速不确定性下在线规划的学习
- 批准号:
1619433 - 财政年份:2016
- 资助金额:
$ 82万 - 项目类别:
Standard Grant
II-EN: Software Tools for Monte-Carlo Optimization
II-EN:蒙特卡罗优化软件工具
- 批准号:
1406049 - 财政年份:2014
- 资助金额:
$ 82万 - 项目类别:
Standard Grant
RI: Small: Automated Planning of Experiments for Design Optimization
RI:小型:自动规划实验以优化设计
- 批准号:
1320943 - 财政年份:2013
- 资助金额:
$ 82万 - 项目类别:
Continuing Grant
Student Poster Program and Travel Scholarships for International Conference on Machine Learning (ICML) 2010; Haifa, Israel
2010 年国际机器学习会议 (ICML) 学生海报计划和旅行奖学金;
- 批准号:
1031917 - 财政年份:2010
- 资助金额:
$ 82万 - 项目类别:
Standard Grant
RI: Medium: Collaborative Research: Solving Stochastic Planning Problems Through Principled Determinization
RI:媒介:协作研究:通过原则确定解决随机规划问题
- 批准号:
0905678 - 财政年份:2009
- 资助金额:
$ 82万 - 项目类别:
Standard Grant
CAREER: Penalty Logic for Structured Machine Learning
职业:结构化机器学习的惩罚逻辑
- 批准号:
0546867 - 财政年份:2006
- 资助金额:
$ 82万 - 项目类别:
Continuing Grant
相似国自然基金
隐秘重组信号序列INT-RSS在T细胞受体基因Tcra重排中的功能和机制研究
- 批准号:32370939
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
选择性PPARγ激动剂INT131调控适应性产热和AD-MSCs分化成棕色样脂肪细胞的机制研究
- 批准号:81903680
- 批准年份:2019
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
INT复合物调节U snRNA 3'加工的结构基础
- 批准号:31800624
- 批准年份:2018
- 资助金额:28.0 万元
- 项目类别:青年科学基金项目
沉默Int6基因的骨髓间充质干细胞复合生物支架构建血管化腹股沟疝补片及其促补片血管化机制
- 批准号:81371698
- 批准年份:2013
- 资助金额:70.0 万元
- 项目类别:面上项目
HIF/Int6调控迟发型EPC体外增殖的机制及其治疗重度子痫前期的可行性
- 批准号:81100439
- 批准年份:2011
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
相似海外基金
SCH: INT: New Machine Learning Framework to Conduct Anesthesia Risk Stratification and Decision Support for Precision Health
SCH:INT:用于进行麻醉风险分层和精准健康决策支持的新机器学习框架
- 批准号:
2347604 - 财政年份:2023
- 资助金额:
$ 82万 - 项目类别:
Standard Grant
SCH: INT: Collaborative Research: DeepSense: Interpretable Deep Learning for Zero-effort Phenotype Sensing and Its Application to Sleep Medicine
SCH:INT:合作研究:DeepSense:零努力表型感知的可解释深度学习及其在睡眠医学中的应用
- 批准号:
2313481 - 财政年份:2022
- 资助金额:
$ 82万 - 项目类别:
Standard Grant
SCH: INT: Collaborative Research: Using Multi-Stage Learning to Prioritize Mental Health
SCH:INT:协作研究:利用多阶段学习优先考虑心理健康
- 批准号:
2124270 - 财政年份:2021
- 资助金额:
$ 82万 - 项目类别:
Standard Grant
SCH:INT: Collaborative Research: Deep Sense: Interpretable Deep Learning for Zero-effort Phenotype Sensing and Its Application to Sleep Medicine
SCH:INT:合作研究:深度感知:零努力表型感知的可解释深度学习及其在睡眠医学中的应用
- 批准号:
2014438 - 财政年份:2020
- 资助金额:
$ 82万 - 项目类别:
Standard Grant
SCH: INT: Collaborative Research: DeepSense: Interpretable Deep Learning for Zero-effort Phenotype Sensing and Its Application to Sleep Medicine
SCH:INT:合作研究:DeepSense:零努力表型感知的可解释深度学习及其在睡眠医学中的应用
- 批准号:
2014431 - 财政年份:2020
- 资助金额:
$ 82万 - 项目类别:
Standard Grant