Quantum plasmonics with extreme nonlinearities for on-chip supercontinuum generation
用于片上超连续谱生成的具有极端非线性的量子等离子体
基本信息
- 批准号:1907423
- 负责人:
- 金额:$ 36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-01 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Nonlinear optics has been a rapidly growing scientific field in recent decades and holds promise for critical applications in optical information processing, telecommunications, and etc. Because the nonlinear coefficients for most materials are typically low, exploring new materials with higher nonlinear responses has always been one of the greatest challenges in this field. As a distinct research field, plasmonics has emerged as a novel approach to manipulate light at nanoscales. Recent advances in nanofabrication enable plasmonic structures at nanometer scales, leading to exceptionally high nonlinear responses due to the quantum size effect. This project aims to combine the field of quantum plasmonics with nonlinear optics to discover new optical materials with extremely high nonlinear responses and to apply such new materials for on-chip supercontinuum generation with an ultra-small footprint. This project involves fundamental science exploration, nano-material design and fabrications, on-chip supercontinuum generation device design and fabrication, and optical characterizations. This research will address fundamental issues at the cross-section of nanoplasmonics and nonlinear optics, and train graduate and undergraduate students in important areas of nanomaterials design and growth, optical characterization, device fabrication, nano-science, and nanotechnology. The transformative goal is to provide the scientific underpinnings of next generation integrated optical components based on engineered nanomaterials with extremely high nonlinearities. Research-based curriculum development, web-based dissemination of research results, journal publications and conference/workshop presentations, will impact more students including those at the pre-college level. Technical description. This project addresses a new way to create strong nonlinear responses in a quantum engineered system and how to use it to build an ultra-compact supercontinuum generation device. The nonlinear optical properties of metal quantum wells will be systematically investigated. A dynamic quantum electrostatic model will be developed to accurately describe and predict the nonlinear responses of the metal quantum well systems. The state-of-the-art quantum plasmonic films will be fabricated at feature size down to 1-3 nm. Based on our theoretical estimation and preliminary experimental results, the quantum plasmonic systems will lead to the record high third order nonlinear susceptibility. The proposed quantum plasmonic waveguide-based supercontinuum generation devices, if successfully demonstrated, would be the first supercontinuum light source with micrometer footprint, enabling new opportunities for high-density integration and on-chip applications. Other than proposing specific individual concept and device, the PI envisions this project as a paradigm shift in the way a nonlinear material is constructed and implemented. Due to the large transition matrix elements and the high electron density in ultrathin metal films, quantum plasmonic structures can be tailored to possess extremely high nonlinear responses at desired operation frequencies. The outcome of this research will fill up knowledge void in both fields of plasmonics and nonlinear optics and pave the way to a new generation of strong nonlinear materials that may find important applications in integrated nonlinear optics.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
近几十年来,非线性光学技术一直是一个快速增长的科学领域,并且对光学信息处理,电信等的关键应用以及大多数材料的非线性系数通常较低,因此对探索具有较高非线性响应的新材料的非线性系数一直是该领域中最大的挑战之一。作为一个独特的研究领域,血浆已经成为一种在纳米级操纵光的新方法。纳米化的最新进展使等离子结构在纳米尺度下,导致由于量子大小效应而导致异常高的非线性响应。该项目旨在将量子等离子间的领域与非线性光学元素结合起来,以发现具有极高非线性响应的新光学材料,并将此类新材料应用于具有超小的足迹的芯片超级纤维生成。该项目涉及基本科学探索,纳米材料设计和制造,片上超局部生成的设备设计和制造以及光学特征。这项研究将解决纳米质谱和非线性光学的横截面的基本问题,并在纳米材料设计和增长,光学表征,设备制造,纳米科学和纳米技术的重要领域的培训毕业生和本科生。变革性的目标是提供基于具有极高非线性的工程纳米材料的下一代集成光学组件的科学基础。基于研究的课程开发,基于Web的研究结果的传播,期刊出版物和会议/研讨会演讲,将影响更多的学生,包括在大学前级别的学生。技术描述。该项目解决了一种在量子工程系统中创建强大的非线性响应的新方法,以及如何使用它来构建超紧凑型超脑部生成设备。金属量子井的非线性光学性质将被系统地研究。将开发动态量子静电模型,以准确描述和预测金属量子井系统的非线性响应。最先进的量子等离子膜的特征尺寸将降至1-3 nm。基于我们的理论估计和初步实验结果,量子等离子系统将导致创纪录的高三阶非线性敏感性。拟议的基于等离子波导的量子性波导的超脑生成设备(如果成功证明)将是第一个具有微米足迹的超脑光源,为高密度整合和芯片应用提供了新的机会。除了提出特定的个人概念和设备外,PI还设想该项目是构建和实施非线性材料的方式的范式转变。由于超薄金属膜中的较大过渡矩阵元件和高电子密度,因此可以根据所需的操作频率量身定制量子等离子体结构以具有极高的非线性响应。这项研究的结果将填补在等离子间和非线性光学领域的知识空白,并为新一代的强大非线性材料铺平了道路,这些材料可能在综合非线性光学方面找到了重要的应用。该奖项反映了NSF的法定任务,并通过使用该基金会的知识优点和广泛的影响来评估NSF的法定任务。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Nonlinear Computational Edge Detection Metalens
- DOI:10.1002/adfm.202204734
- 发表时间:2022-06
- 期刊:
- 影响因子:19
- 作者:Junxiao Zhou;Junxiang Zhao;Qianyi Wu;Ching‐Fu Chen;M. Lei;Guanghao Chen;Fanglin Tian;Zhaowei Liu
- 通讯作者:Junxiao Zhou;Junxiang Zhao;Qianyi Wu;Ching‐Fu Chen;M. Lei;Guanghao Chen;Fanglin Tian;Zhaowei Liu
Tunable topological phase transition in the telecommunication wavelength
电信波长中的可调谐拓扑相变
- DOI:10.1364/ome.487619
- 发表时间:2023
- 期刊:
- 影响因子:2.8
- 作者:Tian, Fanglin;Zhou, Junxiao;Wang, Qiang;Liu, Zhaowei
- 通讯作者:Liu, Zhaowei
Influence of Hafnium Defects on the Optical and Structural Properties of Zirconium Nitride
- DOI:10.1002/pssr.202100372
- 发表时间:2021-08
- 期刊:
- 影响因子:0
- 作者:S. Bopp;Haoliang Qian;Zhaowei Liu
- 通讯作者:S. Bopp;Haoliang Qian;Zhaowei Liu
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zhaowei Liu其他文献
Enhanced charge carrier separation by bi-piezoelectric effects based on pine needle-like BaTiO3/ZnO continuous nanofibers
基于松针状 BaTiO3/ZnO 连续纳米纤维的双压电效应增强载流子分离
- DOI:
10.1039/d2ta01578a - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Wanxing Zheng;Yufei Tang;Zhaowei Liu;Guoxin Xing;Kang Zhao - 通讯作者:
Kang Zhao
Tubular optical microcavities of indefinite medium for sensitive liquid refractometers
用于灵敏液体折光仪的不定介质管状光学微腔
- DOI:
10.1039/c5lc01266j - 发表时间:
2016 - 期刊:
- 影响因子:6.1
- 作者:
Shiwei Tang;Yangfu Fang;Zhaowei Liu;Lei Zhou;Yongfeng Mei - 通讯作者:
Yongfeng Mei
Application of anisotropic metamaerials: Imaging visible light with slab lens
各向异性超材料的应用:用平板透镜成像可见光
- DOI:
10.1364/cleo.2010.cfm1 - 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
Jie Yao;K. Tsai;Y. Wang;Zhaowei Liu;G. Bartal;Yuh‐Lin Wang;Xiang Zhang - 通讯作者:
Xiang Zhang
Three-dimensional nanoscale imaging by plasmonic Brownian microscopy
通过等离子体布朗显微镜进行三维纳米级成像
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
A. Labno;C. Gladden;Jeongmin Kim;Dylan Lu;Xiaobo Yin;Y. Wang;Zhaowei Liu;Xiang Zhang - 通讯作者:
Xiang Zhang
An Intuitive Dominant Test Algorithm of CP-nets Applied on Wireless Sensor Network
一种应用于无线传感器网络的直观的CP-nets主导测试算法
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Zhaowei Liu;Chenghui Zhang;Jinglei Liu - 通讯作者:
Jinglei Liu
Zhaowei Liu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zhaowei Liu', 18)}}的其他基金
Equipment: MRI: Track # 2 Development of a high-speed super-resolution stimulated Raman scattering (SRS) microscope
设备: MRI:轨道
- 批准号:
2320437 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
Continuing Grant
OP: Quantum Hyperbolic Metamaterials: New Sciences and Applications
OP:量子双曲超材料:新科学与应用
- 批准号:
1610538 - 财政年份:2016
- 资助金额:
$ 36万 - 项目类别:
Continuing Grant
Optically Tweezered Localized Plasmonic Structured Illumination Microscopy (OT-LPSIM) for Ultrafast Super Resolution Bio-imaging
用于超快超分辨率生物成像的光镊局部等离子体结构照明显微镜 (OT-LPSIM)
- 批准号:
1604216 - 财政年份:2016
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
High Speed Plasmonic Structured Illumination Microscopy
高速等离子体结构照明显微镜
- 批准号:
0969405 - 财政年份:2010
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
相似国自然基金
mAbGAP43修饰的血浆外泌体携载铈纳米酶清除缺血性卒中受损神经元ROS及锌离子的研究
- 批准号:82301558
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于血浆cfDNA甲基化的肺结节良恶性鉴别及早期肺癌SBRT预后预测的研究
- 批准号:82303577
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
血浆外泌体蛋白RAB1B预警脑白质损伤相关认知障碍及其机制研究
- 批准号:82301372
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
血浆sEV中circ513等新型标志物在胃癌诊疗中的作用与联合应用
- 批准号:82302629
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
血浆外泌体中tsRNA对胶质瘤诊断的生物标志物作用及调控胶质瘤细胞增殖的分子机制研究
- 批准号:82303586
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Design and fabrication of a hybrid metamaterial scanning probe for tunable tip-enhanced nanospectroscopy
用于可调谐尖端增强纳米光谱的混合超材料扫描探针的设计和制造
- 批准号:
23K13640 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Multimodal Label-Free Nanosensor for Single Virus Characterization and Content Analysis
用于单一病毒表征和内容分析的多模式无标记纳米传感器
- 批准号:
10641529 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
Next-generation optical nanoprobes: From quantum biosensing to cellular monitoring
下一代光学纳米探针:从量子生物传感到细胞监测
- 批准号:
10622691 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
UV Plasmon-Enhanced Chiroptical Spectroscopy of Membrane-Binding Proteins
膜结合蛋白的紫外等离子增强手性光谱
- 批准号:
10680969 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
A miniaturized neural network enabled nanoplasmonic spectroscopy platform for label-free cancer detection in biofluids
微型神经网络支持纳米等离子体光谱平台,用于生物流体中的无标记癌症检测
- 批准号:
10658204 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别: