Representation Stability in Topology and Arithmetic Groups
拓扑和算术群中的表示稳定性
基本信息
- 批准号:1906123
- 负责人:
- 金额:$ 20.46万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-08-15 至 2023-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This research project concerns investigating stability phenomena in the algebraic structures of several families of fundamental objects that arise in topology, algebra, and number theory. Specifically, the research will focus on four families of objects. The first are the Torelli groups associated to the mapping class groups of surfaces, which are basic objects in the study of surface topology, encoding certain symmetries of a surface. The second are the configuration spaces of points in a manifold, which are topological spaces that parameterize collections of "particles" in a given space - these configuration spaces have long history in algebraic topology, as well as more recent connections to physics and robotics. The third are the congruence subgroups of general linear groups, which play a role in algebra and number theory. Finally, the fourth family of objects are the special linear groups, which play an essential role throughout mathematics, and are of particular interest in number theory. The PI will study certain algebraic invariants of these objects, called homology or cohomology groups. Although these (co)homology groups cannot currently be computed directly for these families of objects, the PI will use tools from category theory and commutative algebra to detect patterns in these groups, and study their long-term behavior. Torelli groups, configuration spaces, congruence subgroups, and special linear groups each have a rich literature around their stability behavior. This project will broaden the scope of this literature, often by strengthening the algebraic machinery we have to establish and to interpret stability patterns in more general contexts.This research builds on recent work completed jointly by the PI. In work with Miller and Patzt, the PI proved a central stability result for degree-2 homology groups of the Torelli groups of genus-g punctured surface, and the analogous Torelli groups of the automorphism groups Aut(F_n) of the free groups, which the PI plans to extend to higher homological degree. The strategy is to realize these homology groups as modules over certain categories, denoted SI(k) and VIC(k), which encode both symplectic group actions (or general linear group actions in the case of Aut(F_n)) as well as additional algebraic structure on these groups. The key to extending these results will be to establish finiteness results for free resolutions of modules over SI(k) and VIC(k). ?Representation stability? results are known for the n-point configuration spaces of a manifold as n grows, and in work with Miller, the PI established ?secondary? stability results among the unstable homology groups in the configuration spaces of a surface. This appears to be a first result in a much broader and richer pattern of higher-order stability phenomena in configuration spaces of manifolds, which the PI will pursue. The PI will also investigate whether secondary stability patterns hold in the homology of the congruence subgroups GL_n(R,I) as n grows. Finally, the PI will study the algebraic structure of the Steinberg representations of the special linear groups SL_n(O) of a number ring O. These Steinberg representations govern the rational cohomology of SL_n(O) in degrees close to the virtual cohomological dimension. The PI will study these Steinberg representations by analyzing the connectivity of certain associated simplicial complexes.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该研究项目涉及研究拓扑,代数和数理论中几个基本对象的代数结构中的稳定现象。具体而言,研究将集中于四个对象家族。第一个是与映射类表面的映射类组相关的Torelli组,它们是表面拓扑研究中的基本对象,编码表面的某些对称性。第二个是歧管中点的配置空间,它们是给定空间中“粒子”集合的拓扑空间 - 这些配置空间在代数拓扑中具有悠久的历史,并且与物理和机器人技术的最新连接。第三个是一般线性群的一致性子群,它们在代数和数理论中发挥作用。最后,第四个对象家族是特殊的线性群体,它们在整个数学过程中都起着至关重要的作用,并且在数字理论中特别感兴趣。 PI将研究这些对象的某些代数不变,称为同源性或共同体学组。尽管这些(CO)同源组目前无法直接为这些对象家族进行计算,但PI将使用类别理论和交换代数中的工具来检测这些组中的模式,并研究其长期行为。 Torelli组,配置空间,一致性亚组和特殊线性组都有围绕其稳定性行为的丰富文献。该项目将通常通过加强我们必须建立并解释更一般环境中的稳定模式的代数机械来扩大文献的范围。这项研究基于PI共同完成的最新工作。在与Miller和Patzt的合作中,PI证明了torelli属的Torelli属属属的表面的Torelli群体以及自由态组的类似Torelli群体AUT(F_N)的类似Torelli组的中心稳定性结果,PI计划扩展到更高的同源度。该策略是将这些同源组作为某些类别的模块实现,该模块表示为SI(K)和VIC(K),它们编码了syplectic组动作(或在AUT(F_N)中(F_N))以及这些组上的其他代数结构。扩展这些结果的关键是建立在SI(K)和VIC(K)上的免费分辨率的有限结果。表示稳定?结果以n-aprold的n点配置空间而闻名,并且与米勒(Miller)一起工作,pi建立了?次级?表面配置空间中不稳定同源组的稳定性结果。这似乎是PI将追求的歧管配置空间中高阶稳定现象的更广泛和更丰富的模式的第一个结果。 PI还将研究随着n的成长,次级稳定性模式是否在一致性亚组GL_N(R,i)的同源性中是否存在。最后,PI将研究一个数字环O的特殊线性组SL_N(O)的Steinberg表示的代数结构。这些Steinberg表示在接近虚拟同胞维度的程度上控制SL_N(O)的合理共同体。 PI将通过分析某些相关的简单复合物的连通性来研究这些Steinberg的表示。该奖项反映了NSF的法定任务,并使用基金会的知识分子优点和更广泛的影响评估标准,被认为值得通过评估来提供支持。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
MAPPING CLASS GROUP ACTIONS ON CONFIGURATION SPACES AND THE JOHNSON FILTRATION
在配置空间和 Johnson 过滤上映射类组操作
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:1.3
- 作者:ANDREA BIANCHI, JEREMY MILLER
- 通讯作者:ANDREA BIANCHI, JEREMY MILLER
On the Generalized Bykovskiĭ Presentation of Steinberg Modules
关于 Steinberg 模块的广义 Bykovskiä 表示
- DOI:10.1093/imrn/rnab028
- 发表时间:2021
- 期刊:
- 影响因子:1
- 作者:Kupers, Alexander;Miller, Jeremy;Patzt, Peter;Wilson, Jennifer C
- 通讯作者:Wilson, Jennifer C
Stability Properties of Moduli Spaces
- DOI:10.1090/noti2452
- 发表时间:2022-01
- 期刊:
- 影响因子:0
- 作者:Rita Jiménez Rolland;Jenny Wilson
- 通讯作者:Rita Jiménez Rolland;Jenny Wilson
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jennifer Wilson其他文献
Fitness correlates of obligatory versus health motives for exercise: An examination of men in the military
健身与强制性锻炼动机与健康动机的相关性:对军人的检查
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Jennifer Wilson;C. Markey;P. Markey - 通讯作者:
P. Markey
Stories ‘Told’ about engineering in the Media: Implications for attracting diverse groups to the profession
媒体“讲述”的有关工程的故事:对吸引不同群体加入该行业的影响
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Nicola W. Sochacka;Joachim Walther;Jennifer Wilson;Michael Brewer - 通讯作者:
Michael Brewer
Training for Generalization and Maintenance in RtI Implementation: Front–Loading for Sustainability
RtI 实施中的泛化和维护培训:可持续发展的前端加载
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
M. Burns;Andrea M. Egan;Amy K. Kunkel;J. McComas;Meredith Peterson;Naomi L. Rahn;Jennifer Wilson - 通讯作者:
Jennifer Wilson
An Economic Evaluation Comparing Two Schedules of Antenatal Visits
比较两种产前检查计划的经济评估
- DOI:
- 发表时间:
2000 - 期刊:
- 影响因子:2.4
- 作者:
J. Henderson;T. Roberts;J. Sikorski;Jennifer Wilson;S. Clément - 通讯作者:
S. Clément
ASSOCIATION BETWEEN PLATELET AGGREGATION AND MENTAL STRESS INDUCED MYOCARDIAL ISCHEMIA: RESULTS FROM THE REMIT TRIAL
- DOI:
10.1016/s0735-1097(13)61135-3 - 发表时间:
2013-03-12 - 期刊:
- 影响因子:
- 作者:
Robert W. Harrison;Richard Becker;Thomas Ortel;Maggie Kuchibhatla;Stephen Boyle;Zainab Samad;Eric Velazquez;Jennifer Wilson;Cynthia Kuhn;Redford Williams - 通讯作者:
Redford Williams
Jennifer Wilson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jennifer Wilson', 18)}}的其他基金
CAREER: Stability Phenomena in Topology and Arithmetic Groups
职业:拓扑和算术群中的稳定性现象
- 批准号:
2142709 - 财政年份:2022
- 资助金额:
$ 20.46万 - 项目类别:
Continuing Grant
相似国自然基金
基于拓扑约束理论对中硼硅药用玻璃化学稳定性的研究
- 批准号:52372006
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
新型3D拓扑连接结构复合界面层增强柔性全聚合物太阳能电池机械稳定性的研究
- 批准号:52303240
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
联合连通切换拓扑下不稳定多智能体系统的协同控制研究
- 批准号:62306060
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
面向拓扑结构的生化反应网络的稳定性分析及稳定化方法研究
- 批准号:62303409
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
多自由参数时滞系统完全稳定性问题:代数几何方法和拓扑学视角
- 批准号:62303100
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Stability conditions: their topology and applications
稳定性条件:拓扑和应用
- 批准号:
DP240101084 - 财政年份:2024
- 资助金额:
$ 20.46万 - 项目类别:
Discovery Projects
CAREER: Stability Phenomena in Topology and Arithmetic Groups
职业:拓扑和算术群中的稳定性现象
- 批准号:
2142709 - 财政年份:2022
- 资助金额:
$ 20.46万 - 项目类别:
Continuing Grant
CAREER: Unveiling the Stability, Rheology, and Topology of Active Fluids
职业生涯:揭示活性流体的稳定性、流变性和拓扑结构
- 批准号:
1943759 - 财政年份:2020
- 资助金额:
$ 20.46万 - 项目类别:
Continuing Grant
Stability Phenomena in Number Theory, Algebraic Geometry, and Topology
数论、代数几何和拓扑中的稳定性现象
- 批准号:
1402620 - 财政年份:2014
- 资助金额:
$ 20.46万 - 项目类别:
Continuing Grant
Stability and Instability in Topology
拓扑的稳定性和不稳定性
- 批准号:
1406209 - 财政年份:2014
- 资助金额:
$ 20.46万 - 项目类别:
Continuing Grant