Cryptic Hydrogels

隐秘水凝胶

基本信息

  • 批准号:
    1905559
  • 负责人:
  • 金额:
    $ 58.82万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-09-01 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

Non-Technical AbstractHydrogels are a class of material that can become swollen with water, and they represent an increasingly important category of materials in research and commerce. They are employed as biomaterials, contact lenses, absorbent materials, wound healing materials, water retention aids, coatings, adhesives, and many other applications. However, unlike many other type of plastic materials typically used in industry, these hydrogels are typically very weak, and there is currently no robust mechanism to strengthen the materials on-demand. Building this attribute into these hydrogel systems would significantly enhance their real-world applications. In sum, this process costs one to ten billion dollars, and seven to twenty years per drug. This project will create a way to strengthen gels by applying force to them, with specific applications toward better, more robust adhesives. They will also use this funding to create new educational opportunities for students. Specifically, high school women will be brought into the lab during the summer months, where they can work with these and other sophisticated materials and diverse researchers. Technical AbstractHydrogel and organogel networks are swollen, insoluble polymer networks made from soluble monomer precursors, and they are an increasingly important class of materials in research and commercial applications. Their uses are far-reaching in both academia and industry, as biomaterials and wound healing materials; controlled delivery materials and networks; contact lenses; coatings; and adhesives. One critical limitation for gels has been that, in comparison to industrial thermoplastic polymers, they cannot be strengthened in response to mechanical deformation. Building on-demand stiffening into gel systems could greatly broaden their full potential and utility in applications as stable and mechanically robust adhesives, coatings, fabricated articles, and potentially biomaterials. In this project, a team of three laboratories will 1) Create and characterize poly(ethylene glycol) (PEG) gels with strain-induced stiffening properties, both irreversible and electrostatic (reversible) crosslinks, 2) Incorporate shielding groups into the networks to tune their force sensitivity, and 3) apply this technology to mechanically-activated adhesives. These studies will establish fundamental relationships between molecular and environmental parameters and strain-triggered elastic modulus changes with a new class of materials. This work will provide the scientific foundation for hydrogel property control via strain-triggered stiffening or softening mechanisms. This contribution is significant because the eventual applications of this fundamental knowledge could apply to materials design for new hydrophilic materials as well as regenerative medicine and disease. Outreach objectives in this proposal will continue current efforts developed by the PIs in previous NSF-funded broader impacts in expanding engineering research opportunities tailored for high school girls.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术性抽象性凝固凝胶是一类材料,可能会因水而肿胀,它们代表了研究和商业中越来越重要的材料类别。它们被用作生物材料,隐形眼镜,吸收性材料,伤口愈合材料,保留辅助工具,涂料,粘合剂和许多其他应用。但是,与行业通常使用的许多其他类型的塑料材料不同,这些水凝胶通常非常弱,目前没有强大的机制来加强按需增强材料。将此属性构建到这些水凝胶系统中将显着增强其实际应用。总而言之,此过程的费用为1至100亿美元,每名药物耗资7到二十年。 该项目将通过向它们施加力,并为更好,更强大的粘合剂施加力来增强凝胶。他们还将利用这笔资金为学生创造新的教育机会。 具体而言,高中妇女将在夏季将其带入实验室,在那里她们可以与这些和其他复杂的材料以及多样化的研究人员一起工作。技术抽象thydrogel和Oranogel网络肿胀,由可溶性单体前体制成的不溶性聚合物网络,它们是研究和商业应用中越来越重要的材料类别。作为生物材料和伤口愈合材料,它们在学术界和工业中的使用范围很深远。受控的送货材料和网络;隐形眼镜;涂料;和粘合剂。凝胶的一个关键局限性是,与工业热塑性聚合物相比,无法响应机械变形而得到加强。将按需加固到凝胶系统中,可以极大地扩大其在应用中的全部潜力和实用性,因为它是稳定且机械强大的粘合剂,涂料,制造的物品以及潜在的生物材料。在这个项目中,由三个实验室组成的团队将1)创建和表征具有应变诱导的僵硬性能的聚(乙烯乙二醇)(PEG)凝胶,包括不可逆和静电(可逆)交叉链接,2)将屏蔽组融合到网络中,以将其力敏感性和3)应用于机械激活的技术。这些研究将建立分子和环境参数之间的基本关系,以及通过一系列新材料变化的应变触发弹性模量变化。这项工作将通过应变触发的僵硬或软化机制为水凝胶性质控制提供科学基础。这项贡献很重要,因为这种基本知识的最终应用可能适用于新的亲水材料以及再生医学和疾病的材料设计。该提案中的宣传目标将继续由PIS在以前的NSF资助以扩大针对高中女生量身定制的工程研究机会方面开展的最新努力。该奖项反映了NSF的法定任务,并被认为是通过基金会的知识分子优点和更广泛的审查标准通过评估来通过评估来支持的。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Strain-Stiffening Hydrogels with Dynamic, Secondary Cross-Linking
具有动态二次交联的应变硬化水凝胶
  • DOI:
    10.1021/acs.langmuir.2c03117
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Sonu, K. P.;Zhou, Le;Biswas, Santidan;Klier, John;Balazs, Anna C.;Emrick, Todd;Peyton, Shelly R.
  • 通讯作者:
    Peyton, Shelly R.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Shelly Peyton其他文献

Engineered Microenvironments to Study Mechanisms of Tissue Tropism in Metastasis
  • DOI:
    10.1016/j.bpj.2011.11.3887
  • 发表时间:
    2012-01-31
  • 期刊:
  • 影响因子:
  • 作者:
    Erinn Dandley;Nathan Colon;Shireen Rudina;Shannon Alford;Shelly Peyton
  • 通讯作者:
    Shelly Peyton

Shelly Peyton的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Shelly Peyton', 18)}}的其他基金

2024 Signal Transduction in Engineered Extracellular Matrices Gordon Research Conference and Seminar; Southern New Hampshire University, Manchester, New Hampshire; 20-26 July 2024
2024年工程细胞外基质信号转导戈登研究会议及研讨会;
  • 批准号:
    2414497
  • 财政年份:
    2024
  • 资助金额:
    $ 58.82万
  • 项目类别:
    Standard Grant
REU Site: MURALS (Materials-focused Undergraduate Research Applied to the Life Sciences) at UMass Amherst
REU 站点:MURALS(以材料为重点的本科生研究应用于生命科学) at UMass Amherst
  • 批准号:
    2150075
  • 财政年份:
    2022
  • 资助金额:
    $ 58.82万
  • 项目类别:
    Standard Grant
CAREER: Mechanisms of Drug Resistance in a Responsive Biomaterial Platform
职业:响应性生物材料平台中的耐药机制
  • 批准号:
    1454806
  • 财政年份:
    2015
  • 资助金额:
    $ 58.82万
  • 项目类别:
    Continuing Grant
Multiscale Materials in the Study and Treatment of Cancer
癌症研究和治疗中的多尺度材料
  • 批准号:
    1340361
  • 财政年份:
    2013
  • 资助金额:
    $ 58.82万
  • 项目类别:
    Standard Grant
PESO: Materials and Multivariable Models to Predict Tissue Tropism in Metastasis
PESO:预测转移组织向性的材料和多变量模型
  • 批准号:
    1234852
  • 财政年份:
    2012
  • 资助金额:
    $ 58.82万
  • 项目类别:
    Standard Grant

相似国自然基金

单原子纳米酶促交联水凝胶Cu-N4ClG-COL抗氧化协同免疫调控修复骨关节炎软骨缺损的机制研究
  • 批准号:
    82360426
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
组织粘附张力模拟水凝胶促进糖尿病创面修复的应用及机制研究
  • 批准号:
    82302666
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
外场响应电活性水凝胶促进糖尿病难愈合创面动态修复及其作用机制
  • 批准号:
    52303182
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
纤维素基水凝胶多重动态可逆交联网络的构筑及自愈合机理研究
  • 批准号:
    22368046
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
关节软骨修复水凝胶支架材料的仿生湿黏附机理及性能优化研究
  • 批准号:
    52305185
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CAREER: Robust, Reversible, and Stimuli-responsive Thermodynamic Adhesion in Hydrogels
事业:水凝胶中稳健、可逆且刺激响应的热力学粘附
  • 批准号:
    2337592
  • 财政年份:
    2024
  • 资助金额:
    $ 58.82万
  • 项目类别:
    Standard Grant
Macrophage-polarizing ALMA hydrogels for thyroid regeneration following radiation injury
巨噬细胞极化 ALMA 水凝胶用于放射损伤后甲状腺再生
  • 批准号:
    MR/Y033817/1
  • 财政年份:
    2024
  • 资助金额:
    $ 58.82万
  • 项目类别:
    Research Grant
CAREER: Introducing Dynamic Sulfur Chemistry into Hydrogels to Promote Water Retention and Healthy Microbe Growth in Soil
职业:将动态硫化学引入水凝胶中,以促进土壤中的保水性和微生物的健康生长
  • 批准号:
    2337376
  • 财政年份:
    2024
  • 资助金额:
    $ 58.82万
  • 项目类别:
    Continuing Grant
NSF-SNSF: Crack Path Prediction and Control in Nonlinearly Viscoelastic Materials: in-silico to Experiments with Viscoelastic and Tough Hydrogels
NSF-SNSF:非线性粘弹性材料中的裂纹路径预测和控制:粘弹性和坚韧水凝胶的计算机实验
  • 批准号:
    2403592
  • 财政年份:
    2024
  • 资助金额:
    $ 58.82万
  • 项目类别:
    Standard Grant
CAREER: Engineered Hydrogels to Study Host-Parasite Interactions that Drive Extracellular Matrix Remodeling
职业:工程水凝胶研究驱动细胞外基质重塑的宿主-寄生虫相互作用
  • 批准号:
    2338708
  • 财政年份:
    2024
  • 资助金额:
    $ 58.82万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了