Convergent Materials Design: Pressure Tuning Superconductivity via Polymorphism Control
收敛材料设计:通过多晶型控制压力调节超导性
基本信息
- 批准号:1905411
- 负责人:
- 金额:$ 36.75万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-07-15 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
PART 1: NON-TECHNICAL SUMMARYThe rational discovery of new superconductors, materials that conduct electricity without resistance, remains an unsolved materials challenge in chemistry and physics. Simply stated, even how to approach this problem is unknown. Yet achieving this goal has the potential to benefit society with cheaper and more efficient electrical distribution, improved cell towers, and enhanced medical imaging. The proposed work, supported by the Solid State and Materials Chemistry program in the Division of Materials Research, is centered on identifying appropriate design principles for superconductors through iterative materials-by-design. A combination of materials synthesis, pressure-dependent structural and physical property characterization, and computational modeling will be used to establish structure-property relationships. Understanding these relationships will in turn yield design principles allowing scientists to piece together new superconductors, enabling the next generation of technological benefits to society. Involvement of the local community, including electrical engineering students from Morgan State University, will further extend the impact by providing cross-fertilization of knowledge between the materials and electrical engineering fields, and the implementation of new classroom and hands-on modules on solid-state electronic materials will help train the next-generation workforce. PART 2: TECHNICAL SUMMARYThe PIs propose to establish novel structure-function relationships and design principles for new materials discovery in layered electronic materials, specifically aimed toward the superconducting state. To do so, a combination of materials synthesis, physical property and structural characterization measurements under pressure, chemical bonding models, and density functional theory (DFT) will be applied. Specific questions to be addressed include: 1) what is the connection between symmetry, polymorphism, and superconductivity?; and 2) how does dimensionality impact superconductivity? Using electronic structure calculations, the PIs have identified a class of lesser-known materials that will provide unprecedented insight into each of these questions: in the former by targeting concomitant changes in structural parameters, and in the latter by providing the first example of bilayer iron pnictides with flexible chemical motifs. These design principles, which are elucidated through pressure-dependent measurements and computation, will be applied iteratively to inform further design principles for improved materials at ambient pressure. In addition, the application of iterative materials-by-design to superconductivity will demonstrate how a problem for which definitive predictive theories do not exist can still be significantly enhanced by modern materials-by-design approaches. Involvement of the local community, including electrical engineering students from Morgan State University, will further extend the impact by providing cross-fertilization of knowledge between the materials and electrical engineering domains. The implementation of new classroom and hands-on modules on solid-state electronic materials will help train the next generation workforce, with the content freely and publicly available for use by others. This project is supported by the Solid State and Materials Chemistry program in the Division of Materials Research.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
第1部分:非技术总结新的超导体的合理发现,无抵抗的电力的材料,仍然是化学和物理学中未解决的材料挑战。简而言之,即使如何解决此问题也是未知的。 然而,实现这一目标有可能通过更便宜,更有效的电分配,改进的细胞塔和增强的医学成像来使社会受益。在材料研究部中的固态和材料化学计划的支持下,拟议的工作集中在通过设计迭代材料为超导体确定适当的设计原理。材料合成,依赖压力的结构和物理性质表征以及计算建模的组合将用于建立结构 - 培训关系。 理解这些关系反过来将产生设计原则,使科学家能够将新的超导体拼凑在一起,从而为社会带来下一代技术利益。 当地社区的参与,包括摩根州立大学的电气工程专业学生,将通过提供材料和电气工程领域之间知识的交叉利用,并在固态上实施新的教室和动手模式,从而进一步扩大影响电子材料将有助于培训下一代劳动力。第2部分:技术总结PIS建议在分层电子材料中建立新的结构功能关系和设计原理,专门针对超导状态。为此,将应用材料合成,物理特性和结构表征测量在压力,化学键模模型和密度功能理论(DFT)下的组合。 要解决的具体问题包括:1)对称性,多态性和超导性之间的联系是什么? 2)维数如何影响超导性?使用电子结构计算,PI已经确定了一类鲜为人知的材料,这些材料将对每个问题提供前所未有的见解:在前者中,通过针对结构参数的伴随变化,而在后者中,通过提供双层铁的第一个例子具有柔性化学基序的pnictides。这些设计原理通过依赖压力依赖性测量和计算来阐明,将迭代地应用于在环境压力下改善材料的进一步设计原理。此外,逐个设计的迭代材料在超导率上的应用将证明如何通过现代材料划分的方法可以显着增强确定性预测理论的问题。 包括摩根州立大学的电气工程专业学生在内的当地社区的参与将通过提供材料和电气工程领域之间知识的交叉利用来进一步扩大影响。在固态电子材料上实施新的教室和动手模块将有助于培训下一代劳动力,而其他人则可以自由地公开使用。 该项目得到了材料研究部的固态和材料化学计划的支持。该奖项反映了NSF的法定任务,并且使用基金会的知识分子优点和更广泛的影响评估标准,被认为值得通过评估来支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Dataset: ScSI: A new exfoliatable semiconductor
数据集:ScSI:一种新型可剥离半导体
- DOI:10.34863/3jft-j385
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Ferrenti, Austin;Siegler, Maxime;Gao, Shiyuan;Ng, Nicholas;McQueen, Tyrel
- 通讯作者:McQueen, Tyrel
ScSI: A New Exfoliatable Semiconductor
ScSI:新型可剥离半导体
- DOI:10.1021/acs.chemmater.2c00318
- 发表时间:2022
- 期刊:
- 影响因子:8.6
- 作者:Ferrenti, Austin M.;Siegler, Maxime A.;Gao, Shiyuan;Ng, Nicholas;McQueen, Tyrel M.
- 通讯作者:McQueen, Tyrel M.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tyrel McQueen其他文献
Tyrel McQueen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Tyrel McQueen', 18)}}的其他基金
CAREER: From Emergence of Collective Electronic States to Materials by Design in Layered Chalcogenides
职业生涯:从集体电子态的出现到层状硫属化物设计材料
- 批准号:
1253562 - 财政年份:2013
- 资助金额:
$ 36.75万 - 项目类别:
Continuing Grant
相似国自然基金
基于“三明治”构型的延迟荧光材料的设计、合成及其应用研究
- 批准号:52303244
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
非偏振光诱导高光敏性聚酰亚胺液晶取向材料的分子设计和制备
- 批准号:22375135
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
多尺度级串吸振超材料的设计与靶向能量转移规律研究
- 批准号:12372021
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
基于纳微纤维化结构的柔性湿敏复合材料设计及非接触人机交互研究
- 批准号:52303112
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
具有高激子利用率的纯有机快闪烁体材料设计及应用
- 批准号:62305276
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
PINK - Provision of Integrated Computational Approaches for Addressing New Markets Goals for the Introduction of Safe-and-Sustainable-by-Design Chemicals and Materials
PINK - 提供综合计算方法来解决引入安全和可持续设计化学品和材料的新市场目标
- 批准号:
10097944 - 财政年份:2024
- 资助金额:
$ 36.75万 - 项目类别:
EU-Funded
Safe and Sustainable by Design framework for the next generation of Chemicals and Materials
下一代化学品和材料的安全和可持续设计框架
- 批准号:
10110559 - 财政年份:2024
- 资助金额:
$ 36.75万 - 项目类别:
EU-Funded
Reverse Design of Tuneable 4D Printed Materials for Soft Robotics
用于软体机器人的可调谐 4D 打印材料的逆向设计
- 批准号:
DE240100960 - 财政年份:2024
- 资助金额:
$ 36.75万 - 项目类别:
Discovery Early Career Researcher Award
Flexible metal-organic frameworks (MOFs) for hydrogen isotope separation: insights into smart recognition of gas molecules towards materials design
用于氢同位素分离的柔性金属有机框架(MOF):深入了解气体分子对材料设计的智能识别
- 批准号:
24K17650 - 财政年份:2024
- 资助金额:
$ 36.75万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
CAREER: Multiscale Reduced Order Modeling and Design to Elucidate the Microstructure-Property-Performance Relationship of Hybrid Composite Materials
职业:通过多尺度降阶建模和设计来阐明混合复合材料的微观结构-性能-性能关系
- 批准号:
2341000 - 财政年份:2024
- 资助金额:
$ 36.75万 - 项目类别:
Standard Grant