Collaborative Research: Addressing Morphological Instability in Topologically Complex Electrocatalytic Nanostructures
合作研究:解决拓扑复杂电催化纳米结构的形态不稳定性
基本信息
- 批准号:1904578
- 负责人:
- 金额:$ 15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-01 至 2022-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Non-Technical Summary:Commercialization of renewable energy storage and conversion devices, such as water electrolyzers and fuel cells, requires advancements in both efficiency and operational longevity. Performance as well as cost of these electrochemical energy devices is strongly tied to the electrocatalyst materials that drive the reactions producing energy or fuel. Electrocatalyst materials development has centered on the design of nanoscale catalysts that maximize the exposure and usage of precious metals, i.e. Platinum, of which they are composed. These unique nanoscale architectures, however, are susceptible to multiple mechanisms of degradation, the rate of which is typically inversely proportional to the activity of the catalyst. The goal of this project is to highlight these mechanisms of degradation for electrocatalysts possessing complex nano-architectures. With a better understanding of how these materials degrade, mitigation strategies can be proposed, improving durability and breaking away from the inverse proportional relationship between electrocatalyst activity and durability. Insight developed through the proposed work will have a significant impact on the effort to bridge the gap between highly active and highly stable materials where integration of these morphologically stable yet complex and active electrocatalysts into electrochemical energy conversion and storage devices will yield significant improvements in both precious metal loading and device operational longevity. The proposed work will provide one PhD student and several undergraduate students with a broad and interdisciplinary research experience in interfacial electrochemistry and nanomaterial synthesis for renewable energy technologies. Through a partnership with the Lindy Center at Drexel, the PI will highlight the principles of renewable and carbon neutral energy storage and conversion and promote interest in STEM for grade 4-12 community members.Technical Summary:This project will investigate the mechanisms by which three-dimensional, porous, morphologically complex electrocatalytic nanomaterials degrade under relevant electrochemical conditions. The products of this proposed research will highlight the limiting atomic processes and provide insight for the development of mitigation strategies that maintain morphological and compositional integrity with negligible impact on the intrinsic activity of the catalysts. The research objective of the proposed work is to develop a more detailed fundamental understanding of the convolution of electrochemical dissolution and surface diffusion driven coarsening for these three-dimensional nanomaterials that are in a constant state of meta-stability. It is hypothesized that electrochemical coarsening is driven by a dissolution/redeposition process rather than a pure surface diffusion driven process. Through a combination of experimental, local and global measurements, and computational analysis, this project will qualitatively and quantitatively assess the impact of relevant operational parameters on the morphological and compositional evolution of nanoporous materials. This proposed concept has a broad parameter space, composed of a complex web of intertwined interactions. Computational manipulation of this parameter space, through kMC, will be used to explore the underlying physics of electrochemical coarsening: a) the distance along the surface the dissolved species travels before redepositing, b) response time of dissolution and deposition, c) flux of local dissolution for a given UPL, d) the coordination of the preferred defect site, e) flow rate of electrolyte solution (simply by a time-dependent removal of dissolved species), and f) type of surface impurity.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术摘要:可再生能源存储和转换设备(例如水电解槽和燃料电池)的商业化需要提高效率和运行寿命。这些电化学能源装置的性能和成本与驱动产生能量或燃料的反应的电催化剂材料密切相关。电催化剂材料的开发集中在纳米级催化剂的设计上,最大限度地暴露和使用贵金属,即构成其的铂。然而,这些独特的纳米级结构容易受到多种降解机制的影响,其速率通常与催化剂的活性成反比。该项目的目标是强调具有复杂纳米结构的电催化剂的这些降解机制。通过更好地了解这些材料如何降解,可以提出缓解策略,提高耐久性并摆脱电催化剂活性与耐久性之间的反比关系。通过拟议工作形成的见解将对弥合高活性和高稳定材料之间差距的努力产生重大影响,其中将这些形态稳定但复杂和活性的电催化剂集成到电化学能量转换和存储装置中将在这两个方面产生重大改进金属装载和设备运行寿命。拟议的工作将为一名博士生和几名本科生提供可再生能源技术的界面电化学和纳米材料合成方面广泛的跨学科研究经验。通过与德雷克塞尔林迪中心的合作,PI 将强调可再生能源和碳中性能源存储和转换的原则,并提高 4-12 年级社区成员对 STEM 的兴趣。技术摘要:该项目将研究三个机制三维、多孔、形态复杂的电催化纳米材料在相关电化学条件下降解。这项拟议研究的产品将突出限制原子过程,并为开发缓解策略提供见解,以保持形态和成分的完整性,同时对催化剂的内在活性影响可以忽略不计。这项工作的研究目标是对这些处于亚稳定恒定状态的三维纳米材料的电化学溶解和表面扩散驱动的粗化的卷积形成更详细的基本理解。假设电化学粗化是由溶解/再沉积过程而不是纯粹的表面扩散驱动过程驱动的。通过实验、局部和全局测量以及计算分析的结合,该项目将定性和定量评估相关操作参数对纳米多孔材料的形态和成分演变的影响。这个提出的概念具有广泛的参数空间,由相互交织的相互作用的复杂网络组成。通过 kMC 对该参数空间的计算操作将用于探索电化学粗化的基础物理:a)溶解物质在重新沉积之前沿表面行进的距离,b)溶解和沉积的响应时间,c)局部通量给定 UPL 的溶解度,d) 首选缺陷位点的协调,e) 电解质溶液的流速(简单地通过随时间去除溶解物质),以及 f) 表面杂质类型。该奖项反映了 NSF 的法定标准使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zhiyong Xia其他文献
State of Health Estimation of Lithium-Ion Batteries Using Neuron Network and 1kHz Impedance Data
使用神经元网络和 1kHz 阻抗数据估计锂离子电池的健康状态
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Zhiyong Xia;J. A. Abu Qahouq - 通讯作者:
J. A. Abu Qahouq
Long-Term Variations of Meteorological and Precursor Influences on Ground Ozone Concentrations in Jinan, North China Plain, from 2010 to 2020
2010—2020年华北平原济南地区气象及前兆影响地面臭氧浓度长期变化
- DOI:
10.3390/atmos13060994 - 发表时间:
2022-06 - 期刊:
- 影响因子:2.9
- 作者:
Jing Sun;Shixin Duan;Baolin Wang;Lei Sun;Chuanyong Zhu;Guolan Fan;Xiaoyan Sun;Zhiyong Xia;Bo Lv;Jiaying Yang;Chen Wang - 通讯作者:
Chen Wang
Incidence and risk factors for surgical site infection after open reduction and internal fixation of ankle fracture
踝关节骨折切开复位内固定术后手术部位感染的发生率及危险因素
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:1.6
- 作者:
Yaning Sun;Huijuan Wang;Yuchao Tang;Hai;S. Qin;Lihui Xu;Zhiyong Xia;Feng - 通讯作者:
Feng
WITHDRAWN: Analysis of Clinical Stage and Nerve Damage of Endometrial Carcinoma Diagnosed by Hysteroscopy of Artificial Intelligence Computer Information
撤回:人工智能计算机信息宫腔镜诊断子宫内膜癌临床分期及神经损伤分析
- DOI:
10.1016/j.neulet.2020.135215 - 发表时间:
2020 - 期刊:
- 影响因子:2.5
- 作者:
Zhiyong Xia;Liping Zhang;Shengfeng Liu;Wei;Yujuan Liu;Jihong Tu - 通讯作者:
Jihong Tu
Characteristics, chemical transformation and source apportionment of volatile organic compounds (VOCs) during wintertime at a suburban site in a provincial capital city, east China
东部省会城市郊区冬季挥发性有机物(VOCs)特征、化学转化及来源解析
- DOI:
10.1016/j.atmosenv.2023.119621 - 发表时间:
2023-01 - 期刊:
- 影响因子:5
- 作者:
Baolin Wang;Zhenguo Liu;Ziang Li;Yuchun Sun;Chen Wang;Chuanyong Zhu;Lei Sun;Na Yang;Ge Bai;Guolan Fan;Xiaoyan Sun;Zhiyong Xia;Guang Pan;Chongqing Xu;Guihuan Yan - 通讯作者:
Guihuan Yan
Zhiyong Xia的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
基于电驱动可寻址微孔阵列芯片构建单细胞空间外泌体组技术的研究
- 批准号:82372357
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于新型可寻址面阵X射线源的术中放疗关键问题研究
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
面向多种糖尿病生物标志物联合检测的硅基光寻址电位型生物传感器阵列研究
- 批准号:
- 批准年份:2022
- 资助金额:33 万元
- 项目类别:地区科学基金项目
纳米阵列可控制备及可寻址自校准的单芯片多通道光电免疫传感应用研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于铁电晶体管的高能效内容寻址存储器优化技术研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: From Courses to Careers - Addressing Ableism in Physics through Faculty-Student Partnerships
合作研究:从课程到职业——通过师生合作解决物理学能力歧视问题
- 批准号:
2336368 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Collaborative Research: From Courses to Careers - Addressing Ableism in Physics through Faculty-Student Partnerships
合作研究:从课程到职业——通过师生合作解决物理学能力歧视问题
- 批准号:
2336367 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Collaborative Research: Addressing knowledge and capacity shortfalls to advance conservation science and action for native Hawaiian land flora and fauna
合作研究:解决知识和能力不足的问题,以推进夏威夷本土动植物群的保护科学和行动
- 批准号:
2301564 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Collaborative Research: Advancing Quantum Education by Adaptively Addressing Misconceptions in Virtual Reality
合作研究:通过适应性地解决虚拟现实中的误解来推进量子教育
- 批准号:
2302817 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Collaborative Research: Addressing knowledge and capacity shortfalls to advance conservation science and action for endangered native Hawaiian land flora and fauna.
合作研究:解决知识和能力不足的问题,以推进濒临灭绝的夏威夷本土动植物群的保护科学和行动。
- 批准号:
2301565 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Standard Grant