CBET-EPSRC Efficient Surrogate Modeling for Sustainable Management of Complex Seawater Intrusion-Impacted Aquifers

CBET-EPSRC 复杂海水入侵影响含水层可持续管理的高效替代建模

基本信息

  • 批准号:
    1903405
  • 负责人:
  • 金额:
    $ 32万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-09-01 至 2020-03-31
  • 项目状态:
    已结题

项目摘要

Water management in densely populated coastal regions is one of the most pressing sustainability challenges worldwide. Coastal groundwater is especially vulnerable to climate change and sea level rise due to the potential for seawater intrusion into groundwater aquifers. Seawater intrusion has reduced water supply in all coastal regions of the US. This has resulted in high costs to society. Groundwater affected by seawater intrusion requires expensive desalination processes to be made drinkable, while irrigation water could be rendered unusable leading to the abandonment of farmland. Future climate projections suggest the problem of seawater intrusion will worsen. However, the scale of the problem is unclear, making it difficult to devise responses. While computer models of coastal groundwater aquifers can be useful for predicting seawater intrusion, these modeling efforts challenge the capability of even the fastest computers. We propose to address this challenge by developing models that are orders of magnitude faster than current models. This will allow for a much broader consideration of potential solutions. These modeling advances will be made in collaboration with water supply agencies, with the goal of increasing the utility of groundwater modeling for coastal communities. Successful development and adoption of these approaches will help agencies tasked with the protection of coastal aquifers devise sustainable management strategies to protect scarce water resources.Solutions to seawater intrusion problems involve combinations of more efficient pumping schemes, demand reduction, and technological interventions such as desalination. However, determining optimal solutions for these problems poses extreme computational demands. This project will greatly advance the development and application of simulation-optimization (SO) by developing computationally efficient, robust, and accurate surrogate models for coastal groundwater systems. The limited literature on SO and surrogate modeling in seawater intrusion problems has focused on simplified hydrogeological settings and mathematical representations of management strategies. However, realistic seawater intrusion problems involve hydrogeological complexities, including discrete lithological facies, faults and fractures, and saltwater-freshwater mixing zone dynamics. Solutions necessitate nonlinear objective functions and continuous and discrete decision variables, representing a wide range of engineering components. We hypothesize that these hydrogeologic and management features determine the building of accurate and efficient surrogates, and accurate surrogate SO models for seawater intrusion problems can be at least an order of magnitude faster than full-scale models. The reduction in computational effort will allow us to investigate a broader range of potential sea level rise and climate change impacts and a wider range of potential management responses to these impacts. To achieve this goal, the specific project objectives are to: i) develop SO test problems to provide robust evaluation of model surrogates; ii) formulate management objectives and constraints based on management of the test case aquifers, and identify scenarios relevant to the test cases; and iii) program, train, and evaluate the performance of ?data-driven? and ?model-driven? surrogates to identify optimal management schemes for the test case aquifers, a range of sea level rates, climatology, and groundwater demand scenarios.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
人口稠密的沿海地区的水资源管理是全球最紧迫的可持续发展挑战之一。由于海水可能侵入地下水含水层,沿海地下水特别容易受到气候变化和海平面上升的影响。海水入侵导致美国所有沿海地区的供水量减少。这给社会造成了高昂的成本。受海水入侵影响的地下水需要昂贵的海水淡化过程才能饮用,而灌溉水可能无法使用,导致农田被废弃。未来的气候预测表明海水入侵问题将会恶化。然而,问题的严重程度尚不清楚,因此很难制定应对措施。虽然沿海地下水含水层的计算机模型可用于预测海水入侵,但这些建模工作甚至对最快计算机的能力提出了挑战。我们建议通过开发比当前模型快几个数量级的模型来应对这一挑战。这将使我们能够更广泛地考虑潜在的解决方案。这些建模进展将与供水机构合作进行,目标是提高沿海社区地下水建模的实用性。这些方法的成功开发和采用将有助于负责保护沿海含水​​层的机构制定可持续管理战略,以保护稀缺的水资源。海水入侵问题的解决方案包括更有效的抽水计划、减少需求和海水淡化等技术干预措施的结合。然而,确定这些问题的最佳解决方案提出了极高的计算要求。该项目将通过为沿海地下水系统开发计算高效、稳健且准确的替代模型,极大地推进模拟优化(SO)的开发和应用。关于海水入侵问题中的 SO 和替代模型的文献有限,主要集中在简化的水文地质环境和管理策略的数学表示上。然而,现实的海水入侵问题涉及水文地质的复杂性,包括离散的岩性相、断层和裂缝以及咸水-淡水混合区动力学。解决方案需要非线性目标函数以及连续和离散决策变量,代表各种工程组件。我们假设这些水文地质和管理特征决定了准确有效的替代模型的构建,并且针对海水入侵问题的精确替代 SO 模型可以比全尺寸模型快至少一个数量级。计算工作量的减少将使我们能够调查更广泛的潜在海平面上升和气候变化影响,以及更广泛的潜在管理应对这些影响的措施。为了实现这一目标,具体的项目目标是: i) 开发 SO 测试问题以提供对模型代理的稳健评估; ii) 根据测试案例含水层的管理制定管理目标和约束,并确定与测试案例相关的场景; iii) 规划、培训和评估“数据驱动”的性能和?模型驱动?代理人确定测试案例含水层、一系列海平面率、气候学和地下水需求情景的最佳管理方案。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优点和更广泛的影响审查进行评估,被认为值得支持标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alex Mayer其他文献

Student-Generated Protective Behaviors to Avert Severe Harm Due to High-Risk Alcohol Consumption
学生采取保护行为,以避免因高风险饮酒而造成严重伤害
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sandi W. Smith;C. LaPlante;Wilma Novales Wibert;Alex Mayer;C. Atkin;K. Klein;Ed Glazer;Dennis Martell
  • 通讯作者:
    Dennis Martell
Psychosocial implications of unconventional natural gas development: Quality of life in Ohio's Guernsey and Noble Counties
非常规天然气开发的社会心理影响:俄亥俄州根西岛和诺布尔县的生活质量
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Michael P. Fisher;Alex Mayer;Kaitlin Vollet;E. Hill;E. Haynes
  • 通讯作者:
    E. Haynes

Alex Mayer的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alex Mayer', 18)}}的其他基金

NSF Convergence Accelerator Track K: Unraveling the Benefits, Costs, and Equity of Tree Coverage in Desert Cities
NSF 融合加速器轨道 K:揭示沙漠城市树木覆盖的效益、成本和公平性
  • 批准号:
    2344472
  • 财政年份:
    2024
  • 资助金额:
    $ 32万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: SAI: Participatory Design for Water Quality Monitoring of Highly Decentralized Water Infrastructure Systems
合作研究:EAGER:SAI:高度分散的水基础设施系统水质监测的参与式设计
  • 批准号:
    2121991
  • 财政年份:
    2022
  • 资助金额:
    $ 32万
  • 项目类别:
    Standard Grant
CBET-EPSRC Efficient Surrogate Modeling for Sustainable Management of Complex Seawater Intrusion-Impacted Aquifers
CBET-EPSRC 复杂海水入侵影响含水层可持续管理的高效替代建模
  • 批准号:
    2022278
  • 财政年份:
    2020
  • 资助金额:
    $ 32万
  • 项目类别:
    Standard Grant
EAGER: Collaborative Research: Role of Citizen Science in Watershed Hydrology Research: Relationships between Volunteer Motivations, Data Quantity and Quality, and Decision-Making
EAGER:协作研究:公民科学在流域水文学研究中的作用:志愿者动机、数据数量和质量以及决策之间的关系
  • 批准号:
    1644860
  • 财政年份:
    2017
  • 资助金额:
    $ 32万
  • 项目类别:
    Standard Grant
RET Site: PLACE- Promoting Learning About Computational tools and the Environment
RET 网站:PLACE- 促进有关计算工具和环境的学习
  • 批准号:
    1542383
  • 财政年份:
    2016
  • 资助金额:
    $ 32万
  • 项目类别:
    Standard Grant
CI-TEAM Demo: Environmental CyberCitizens: Engaging Citizen Scientists in Global Environmental Change through Crowdsensing and Visualization
CI-TEAM 演示:环境网络公民:通过群体感知和可视化让公民科学家参与全球环境变化
  • 批准号:
    1135523
  • 财政年份:
    2011
  • 资助金额:
    $ 32万
  • 项目类别:
    Standard Grant
IDR: Collaborative Research: Sustainable Water Resources for Communities under Climate Change: Can State-of-the-Art Forecasting Inform Decision-Making in Data Sparse Regions?
IDR:合作研究:气候变化下社区的可持续水资源:最先进的预测能否为数据稀疏地区的决策提供信息?
  • 批准号:
    1014818
  • 财政年份:
    2010
  • 资助金额:
    $ 32万
  • 项目类别:
    Standard Grant
WSC-Category 1: Humans, Hydrology, Climate Change, and Ecosystems- An Integrated Analysis of Water Resources and Ecosystem Services in the Great Lakes Basin
WSC-类别 1:人类、水文学、气候变化和生态系统 - 大湖流域水资源和生态系统服务综合分析
  • 批准号:
    1039062
  • 财政年份:
    2010
  • 资助金额:
    $ 32万
  • 项目类别:
    Standard Grant
New GK12 GlobalWatershed: Integrating Rural and Global Perspectives with Research and Technological Advances
新 GK12 GlobalWatershed:将农村和全球视角与研究和技术进步相结合
  • 批准号:
    0841073
  • 财政年份:
    2009
  • 资助金额:
    $ 32万
  • 项目类别:
    Standard Grant
Engaging Social Scientists in the WATERS Initiative: Special Sessions at the 2008 International Symposium on Society and Resource Management
让社会科学家参与 WATERS 倡议:2008 年社会与资源管理国际研讨会的特别会议
  • 批准号:
    0827497
  • 财政年份:
    2008
  • 资助金额:
    $ 32万
  • 项目类别:
    Standard Grant

相似海外基金

EPSRC-SFI:Towards power efficient microresonator frequency combs
EPSRC-SFI:迈向节能微谐振器频率梳
  • 批准号:
    EP/X040844/1
  • 财政年份:
    2024
  • 资助金额:
    $ 32万
  • 项目类别:
    Research Grant
EPSRC-FAPESP Efficient ground energy systems for deployment in diaphragm walls under challenging application scenarios
EPSRC-FAPESP 高效的地面能源系统,可在具有挑战性的应用场景下部署在地下连续墙中
  • 批准号:
    EP/X032639/1
  • 财政年份:
    2023
  • 资助金额:
    $ 32万
  • 项目类别:
    Research Grant
ECCS-EPSRC. Acoustically Induced Ferromagnetic Resonance (FMR) Assisted Energy Efficient Spin Torque Memory Devices
ECCS-EPSRC。
  • 批准号:
    EP/X036715/1
  • 财政年份:
    2023
  • 资助金额:
    $ 32万
  • 项目类别:
    Research Grant
ECCS-EPSRC: Collaborative Research: Acoustically induced Ferromagnetic Resonance (FMR) assisted Energy Efficient Spin Torque memory devices
ECCS-EPSRC:合作研究:声感应铁磁谐振 (FMR) 辅助节能自旋转矩存储器件
  • 批准号:
    2152528
  • 财政年份:
    2022
  • 资助金额:
    $ 32万
  • 项目类别:
    Standard Grant
EPSRC-SFI: Cutting Edge Analytical Solutions for Smart, Integrated, Efficient Biopharmaceutical Production
EPSRC-SFI:用于智能、集成、高效生物制药生产的尖端分析解决方案
  • 批准号:
    EP/V041185/1
  • 财政年份:
    2022
  • 资助金额:
    $ 32万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了