CHS: Large: Collaborative Research: Participatory Design and Evaluation of Socially Assistive Robots for Use in Mental Health Services in Clinics and Patient Homes

CHS:大型:协作研究:用于诊所和患者家庭心理健康服务的社交辅助机器人的参与式设计和评估

基本信息

  • 批准号:
    1900883
  • 负责人:
  • 金额:
    $ 58.82万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-09-01 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

A significant concern in the United States relates to mental health disorders, especially depression; the National Institute of Mental Health (NIMH) has estimated that 17.3 million adults aged 18 or older (7.1% of the adult population in the U.S.) had at least one major depressive episode in 2017. The primary goal of this project is to enable patients and clinicians working together with researchers to design a socially assistive robot to provide support for, and as an intervention to alleviate the symptoms of, depression. The robot, Therabot, currently takes the form of a dog and is intended to serve as a pet-like companion. The project will allow both patients and clinicians to customize the capabilities and behaviors of the robot in order to improve patient health and well-being. The effectiveness of the modified robots will be evaluated in clinical settings and by means of longer-term use in patient homes. Project outcomes will include advances in healthcare robotics and improvements in human-robot interaction, thanks to a combination of onboard sensors that provide additional information to clinicians along with artificial intelligence to customize the interactions of the robot with the patient. This activity is also expected to transform mental healthcare interventions, and to reduce healthcare costs for mental health concerns by allowing many patients to remain in their homes longer with the aid of their assistive support robot. This research topic is of interest to a diversity of students, as well as clinical practitioners, and will promote educational training and opportunities in the areas of science, technology, engineering, and mathematics.This project will employ Participatory Design (PD) methods to develop an adaptable socially assistive robot platform by extending the features and capabilities of Therabot. Appropriate therapeutic interventions will be identified and their effectiveness evaluated using this platform to address the needs of individuals diagnosed with depression. The main research contributions are to apply PD methods to socially assistive robots for mental health with particular focus on bridging therapy in clinical and home settings, to further the technical development of adaptable robotic systems, and to provide an extension to the Interactive Social Engagement Architecture and Toolkit for long-term interaction outside of the laboratory. The project will develop PD activities to expand the design of Therabot which, unlike off-the-shelf systems, can be amended to suit the changing needs and preferences of diverse patients and clinicians over time.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
美国的一个重大关注与心理健康障碍有关,尤其是抑郁症。美国国家心理健康研究所(NIMH)估计,2017年至少有1730万18岁以上(美国成年人口的7.1%)的成年人在2017年至少有一个重大抑郁症。该项目的主要目标是使患者和临床医生与研究人员一起工作,以设计社会辅助机器人,以设计一种对疗程的支持,以促进抑郁症状,抑郁症状。机器人Therabot目前采用狗的形式,旨在作为宠物般的伴侣。该项目将允许患者和临床医生自定义机器人的能力和行为,以改善患者的健康和福祉。修饰机器人的有效性将在临床环境中和长期使用在患者家庭中进行评估。项目成果将包括医疗机器人技术的进步和人类机器人互动的改进,这要归功于车载传感器的组合,这些传感器与人工智能一起为临床医生提供了其他信息,以自定义机器人与患者的互动。预计这项活动也有望改变心理保健干预措施,并通过允许许多患者在辅助支持机器人的帮助下留在家中更长的时间来减少心理健康问题的医疗费用。该研究主题对多种学生以及临床从业人员感兴趣,并将在科学,技术,工程和数学领域促进教育培训和机会。该项目将采用参与性设计(PD)方法来开发一种可适应性的社会辅助机器人平台,通过扩展Therabot的功能和功能。 将确定适当的治疗干预措施,并使用此平台评估其有效性,以满足诊断为抑郁症的人的需求。主要的研究贡献是将PD方法应用于社会辅助机器人的心理健康,特别关注临床和家庭环境中的桥接疗法,进一步进一步的适应性机器人系统的技术开发,并为实验室以外的长期互动提供互动性的社会参与体系结构和工具包。该项目将开发PD活动,以扩大Therabot的设计,与现成的系统不同,可以随着时间的推移适应不同患者和临床医生的不断变化的需求和偏好。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子和更广泛影响的评估来通过评估来提供支持的。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
What Skin Is Your Robot In?
你的机器人是什么皮肤?
  • DOI:
    10.1145/3568294.3580137
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Collins, Sawyer;Hicks, Daniel;Henkel, Zachary;Baugus Henkel, Kenna;Piatt, Jennifer A.;Bethel, Cindy L.;Sabanovic, Selma
  • 通讯作者:
    Sabanovic, Selma
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Megan Richardson其他文献

Using public data to measure diversity in computer science research communities: A critical data governance perspective
  • DOI:
    10.1016/j.clsr.2022.105655
  • 发表时间:
    2022-04-01
  • 期刊:
  • 影响因子:
  • 作者:
    Rachelle Bosua;Marc Cheong;Karin Clark;Damian Clifford;Simon Coghlan;Chris Culnane;Kobi Leins;Megan Richardson
  • 通讯作者:
    Megan Richardson
The Right to Privacy: Origins and Influence of a Nineteenth-Century Idea
隐私权:十九世纪思想的起源和影响
  • DOI:
    10.1017/9781108303972
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Megan Richardson
  • 通讯作者:
    Megan Richardson
Contact-Tracing Technologies and the Problem of Trust—Framing a Right of Social Dialogue for an Impact Assessment Process in Pandemic Times
接触者追踪技术和信任问题——为大流行时期的影响评估过程制定社会对话权
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    R. Bosua;Damian Clifford;Megan Richardson
  • 通讯作者:
    Megan Richardson

Megan Richardson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Megan Richardson', 18)}}的其他基金

HNDS-I: A Data Visualization Tool for the COVID-19 Online Prevalence of Emotions in Institutions Database
HNDS-I:机构数据库中 COVID-19 在线情绪流行率的数据可视化工具
  • 批准号:
    2318438
  • 财政年份:
    2023
  • 资助金额:
    $ 58.82万
  • 项目类别:
    Standard Grant
RAPID: Analyses of Emotions Expressed in Social Media and Forums During the COVID-19 Pandemic
RAPID:对 COVID-19 大流行期间社交媒体和论坛中表达的情绪进行分析
  • 批准号:
    2031246
  • 财政年份:
    2020
  • 资助金额:
    $ 58.82万
  • 项目类别:
    Standard Grant

相似国自然基金

基于大塑性变形晶粒细化的背压触变反挤压锡青铜偏析行为调控研究
  • 批准号:
    52365047
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
面向大跨度结构的高强多孔骨料内养护UHPC徐变性能与模型研究
  • 批准号:
    52308231
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于深度光学的大视场高分辨宽景深小型化显微成像
  • 批准号:
    62301293
  • 批准年份:
    2023
  • 资助金额:
    10 万元
  • 项目类别:
    青年科学基金项目
基于气体多通腔多模非线性效应的大能量可调谐光源的研究
  • 批准号:
    12374318
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
二维氮化钼/磷化钼面内异质结构催化材料的设计合成及大电流密度析氢性能研究
  • 批准号:
    22379116
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

CHS: Large: Collaborative Research: Pervasive Data Ethics for Computational Research
CHS:大型:协作研究:计算研究的普遍数据伦理
  • 批准号:
    1947754
  • 财政年份:
    2019
  • 资助金额:
    $ 58.82万
  • 项目类别:
    Standard Grant
CHS: Large: Collaborative Research: Participatory Design and Evaluation of Socially Assistive Robots for Use in Mental Health Services in Clinics and Patient Homes
CHS:大型:协作研究:用于诊所和患者家庭心理健康服务的社交辅助机器人的参与式设计和评估
  • 批准号:
    1900683
  • 财政年份:
    2019
  • 资助金额:
    $ 58.82万
  • 项目类别:
    Standard Grant
CHS: Large: Collaborative Research: Gender-Inclusive Open Source through Gender-Inclusive Tools
CHS:大型:协作研究:通过性别包容性工具实现性别包容性开源
  • 批准号:
    1901031
  • 财政年份:
    2019
  • 资助金额:
    $ 58.82万
  • 项目类别:
    Continuing Grant
CHS: Large: Collaborative Research: Gender-Inclusive Open Source through Gender-Inclusive Tools
CHS:大型:协作研究:通过性别包容性工具实现性别包容性开源
  • 批准号:
    1900903
  • 财政年份:
    2019
  • 资助金额:
    $ 58.82万
  • 项目类别:
    Continuing Grant
CHS: Medium: Collaborative Research: Scalable Integration of Data-Driven and Model-Based Methods for Large Vocabulary Sign Recognition and Search
CHS:中:协作研究:用于大词汇量符号识别和搜索的数据驱动和基于模型的方法的可扩展集成
  • 批准号:
    1763523
  • 财政年份:
    2018
  • 资助金额:
    $ 58.82万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了