Collaborative Research: Experimental and Numerical Constraints on Density Evolution, Buoyancy Reversal, and Runout Distance in Pyroclastic Density Currents
合作研究:火山碎屑密度流中密度演化、浮力反转和跳动距离的实验和数值约束
基本信息
- 批准号:1852471
- 负责人:
- 金额:$ 5.41万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-06-01 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Explosive volcanic eruptions often generate pyroclastic flows, which are violent currents of hot ash and gas that travel along the ground at hurricane force speeds. Few people survive and many structures cannot withstand encounters with pyroclastic flows, making them the deadliest features generated from explosive volcanic eruptions. Dilute pyroclastic flows are particularly hazardous because they are less constrained to follow topography, making them much more unpredictable. These flows typically terminate when the ground hugging current becomes less dense than the surrounding atmosphere and reverses buoyancy, at which point it rises up to form ash-laden plumes. Understanding the mechanism and rate of this buoyancy reversal, and ultimately the runout distance of these flows, is necessary for accurate hazard prediction and for interpreting deposits of past eruptions. Likewise understanding the formation of buoyant plumes is necessary to understand the aviation and ashfall hazards 100's of kilometers from the eruptions. As the world's population continues to grow, deadly encounters with volcanic eruptions will increase rapidly, and thus scientists need to accurately predict their behavior, including impact force, runout distance, and buoyancy reversal in order to mitigate their hazards. In addition to those societal impacts, graduate and undergraduate students as well as a postdoc are supported by this award. Interactive tools and videos are also being developed around this work, to be distributed to K-12 educators as well as via the National Museum of Natural History.Because the destructiveness of pyroclastic flows inhibits direct measurements, this study will combine physical analog experiments with multiphase numerical modeling to establish how pyroclastic flow properties, dynamic pressures, and buoyancy evolve during travel. Ground hugging flows can reverse their buoyancy if enough pumice and ash is deposited and/or if enough air is entrained and heated, expanding the flow. At present, this reversal is often posited as an abrupt terminating condition for the progression of the flow on the ground. Counter, however, to assumptions used in parameterized models, the processes that result in buoyancy reversal, entrainment and deposition, are heterogeneous and can alter concentration gradients as indicated by previous analog experiments, multiphase numerical models, and field evidence. Indeed, previous approaches that treat such currents as uniform oversimplify entrainment, resulting in inaccurate predictions of flow dynamics. As the behavior and runout of turbulent currents are strongly dictated by the development of buoyancy reversal, a better understanding of the interactions and feedbacks between sedimentation and entrainment is needed to develop more realistic models. Experiments in the Experimental Volcanology Laboratory (Smithsonian Institution) will investigate how buoyancy evolves due to entrainment in stratified currents. Experiments using the Deep Water Basin in the Morphodynamics Laboratory (UT Austin) will investigate how entrainment evolves in stratified currents modified by particle settling. Each set of experiments will provide independent and crucial information about how instabilities develop and incorporate ambient fluid into stratified currents, and how these processes control the rate and location of buoyancy reversal and liftoff. Three dimensional data from the experiments will be directly compared to multiphase numerical simulations (UOregon) to validate stratification evolution and liftoff conditions under end-member scenarios. A suite of simulations will also be used to explore the mixing processes and mass balance during the initiation of liftoff in ways not possible with parameterized entrainment models. This study aims to investigate heterogeneous deposition and entrainment in turbulent, stratified, particle-laden currents using complementary analog experiments and multiphase numerical models to establish how pyroclastic flow properties, dynamic pressures, and buoyancy evolve during transport.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
爆炸性的火山喷发通常会产生火山碎屑流,它们是热灰和气体的暴力电流,以飓风速度沿着地面传播。很少有人生存,许多结构无法承受与火山碎屑流的相遇,这使其成为爆炸性火山喷发产生的最致命的特征。稀释的火山碎屑流特别危险,因为它们对遵循地形的限制较小,从而使它们变得更加不可预测。当地面拥抱电流变得比周围的气氛较少并逆转浮力时,这些流量通常会终止,此时它会升起形成灰烬的羽毛。 了解这种浮力逆转的机制和速率,以及最终这些流动的跳动距离,对于准确的危害预测和解释过去喷发的沉积是必要的。 同样,必须了解浮力羽毛的形成,以了解从喷发的航空和灰烬危害100公里。 随着世界人口的不断增长,与火山喷发的致命相遇将迅速增加,因此科学家需要准确预测其行为,包括影响力,跳动距离和浮力逆转,以减轻其危害。除了这些社会影响外,该奖项还支持研究生和本科生以及博士后。 Interactive tools and videos are also being developed around this work, to be distributed to K-12 educators as well as via the National Museum of Natural History.Because the destructiveness of pyroclastic flows inhibits direct measurements, this study will combine physical analog experiments with multiphase numerical modeling to establish how pyroclastic flow properties, dynamic pressures, and buoyancy evolve during travel. 如果足够的浮肿和灰分沉积和/或加热足够的空气并扩大了流量,则地面拥抱流可以扭转其浮力。 目前,这种逆转通常被认为是地面流动进展的突然终止条件。 但是,对参数化模型中使用的假设,导致浮力逆转,夹带和沉积的过程是异质的,可以改变浓度梯度,如先前的模拟实验,多相数字模型和现场证据所示。 实际上,以前的方法将这些电流视为均匀简化的夹带,从而导致流动动力学的预测不准确。 由于浮力逆转的发展强烈决定了湍流的行为和跳动,因此需要更好地理解沉积和夹带之间的相互作用和反馈,以开发更现实的模型。实验火山学实验室(史密森尼机构)的实验将研究浮力如何由于分层电流夹带而演变。使用形态动力学实验室(UT Austin)中使用深水盆地的实验将研究夹带在通过粒子沉降修饰的分层电流中如何演变。每组实验都将提供有关如何发展并将环境流体融入分层电流的独立和关键信息,以及这些过程如何控制浮力逆转和升降的速度和位置。实验中的三维数据将直接与多相数字模拟(Uoregon)进行比较,以验证分层的演变和升降条件在末端成员的情况下。一套模拟还将使用参数化的夹带模型以不可能的方式启动升降机期间探索混合过程和质量平衡。这项研究旨在研究使用互补的类似实验和多相数值模型来研究异质沉积和夹带湍流,分层,含粒子的电流,以确定在运输过程中如何发展热塑性流动性能,动态压力和浮力在运输过程中的进化。这种奖励反映了NSF的法定任务和审查的范围,该奖项是通过评估的范围来弥补的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Benjamin Andrews其他文献
An Evaluation of Rater Agreement Indices Using Generalizability Theory
使用概括性理论评估评估者一致性指数
- DOI:
10.1007/978-3-319-77249-3_7 - 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Dongmei Li;Qing Yi;Benjamin Andrews - 通讯作者:
Benjamin Andrews
Multilevel Modeling To Understand The Folding Hysteresis Of GFP
- DOI:
10.1016/j.bpj.2008.12.1661 - 发表时间:
2009-02-01 - 期刊:
- 影响因子:
- 作者:
Shachi Gosavi;Benjamin Andrews;Patricia Jennings;Jose' Onuchic - 通讯作者:
Jose' Onuchic
Benjamin Andrews的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Benjamin Andrews', 18)}}的其他基金
Collaborative Research: How faithfully are melt embayments wedded to magma ascent?
合作研究:熔体海湾与岩浆上升的关系有多忠实?
- 批准号:
2015424 - 财政年份:2020
- 资助金额:
$ 5.41万 - 项目类别:
Standard Grant
Collaborative Proposal: Experimental Studies of Dilute Pyroclastic Density Currents
合作提案:稀火山碎屑密度流的实验研究
- 批准号:
1447480 - 财政年份:2015
- 资助金额:
$ 5.41万 - 项目类别:
Standard Grant
EAR-PF: TURBULENT AIR ENTRAINMENT IN PYROCLASTIC DENSITY CURRENTS
EAR-PF:火山碎屑密度流中的湍流空气夹带
- 批准号:
0847366 - 财政年份:2009
- 资助金额:
$ 5.41万 - 项目类别:
Fellowship Award
相似国自然基金
多机械臂协作系统动力学层级解析建模与协调柔顺控制理论及实验研究
- 批准号:52175083
- 批准年份:2021
- 资助金额:56 万元
- 项目类别:面上项目
基于社会偏好和有限理性的团队协作激励理论及实验研究
- 批准号:72073057
- 批准年份:2020
- 资助金额:48 万元
- 项目类别:面上项目
受生物启发的多水下机器人环境自适应集群协作控制方法及实验研究
- 批准号:61973007
- 批准年份:2019
- 资助金额:63 万元
- 项目类别:面上项目
数据驱动的复杂供应链网络多主体协作的计算实验及决策优化方法研究
- 批准号:71771195
- 批准年份:2017
- 资助金额:47.0 万元
- 项目类别:面上项目
网络组织结构、治理机制对协作创新的影响研究
- 批准号:70972085
- 批准年份:2009
- 资助金额:29.0 万元
- 项目类别:面上项目
相似海外基金
NSF-BSF: Collaborative Research: Solids and reactive transport processes in sewer systems of the future: modeling and experimental investigation
NSF-BSF:合作研究:未来下水道系统中的固体和反应性输送过程:建模和实验研究
- 批准号:
2134594 - 财政年份:2024
- 资助金额:
$ 5.41万 - 项目类别:
Standard Grant
NSF-BSF: Collaborative Research: Solids and reactive transport processes in sewer systems of the future: modeling and experimental investigation
NSF-BSF:合作研究:未来下水道系统中的固体和反应性输送过程:建模和实验研究
- 批准号:
2134747 - 财政年份:2024
- 资助金额:
$ 5.41万 - 项目类别:
Standard Grant
Collaborative Research: Understanding Acoustoplasticity through Multiscale Computational and In-Situ, Time-Resolved Experimental Approach
合作研究:通过多尺度计算和原位时间分辨实验方法了解声塑性
- 批准号:
2148678 - 财政年份:2023
- 资助金额:
$ 5.41万 - 项目类别:
Standard Grant
Collaborative Research: Effect of Vertical Accelerations on the Seismic Performance of Steel Building Components: An Experimental and Numerical Study
合作研究:垂直加速度对钢建筑构件抗震性能的影响:实验和数值研究
- 批准号:
2244696 - 财政年份:2023
- 资助金额:
$ 5.41万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245111 - 财政年份:2023
- 资助金额:
$ 5.41万 - 项目类别:
Continuing Grant