CRII: AF: Towards an Accurate and Complete Characterization of the Solution Space in Phylogeny Estimation from Mixed Samples

CRII:AF:在混合样本的系统发育估计中实现解决方案空间的准确和完整的表征

基本信息

项目摘要

Cancers result from an evolutionary process during which mutations accumulate in a population of cells, leading to the presence of distinct cellular populations within the same tumor with varying complements of mutations. Thus, to understand and treat cancer, researchers must view the disease through the lens of evolution. Phylogenetic trees, or phylogenies, are mathematical models to describe the evolutionary history and relationships of entities observed at the present time. They have been traditionally applied to study biological species and languages. In the context of cancer, tumor phylogenies are essential to improve our understanding of basic mechanisms of cancer progression, and to develop personalized cancer treatment plans tailored to the unique evolutionary history of a patient's tumor. This project addresses a challenge that is unique to cancer phylogenetics, i.e. phylogeny inference from mixed tumor samples, which form the majority of current cancer sequencing studies. While a biological sample in traditional phylogenetics contains sequences from cells with identical genomes, a mixed tumor sample is composed of sequences from cells with distinct genomes. Consequently, multiple phylogenetic trees may be inferred from the same mixed input samples, potentially leading to diverging conclusions in downstream clinical and basic science analyses of cancers. To address this challenge, this project seeks new algorithms, theory and practical implementations for characterizing the solution space in phylogeny estimation from mixed tumor samples. In addition, this award will support the advancement, training and education of students at all levels through course and outreach module design. The underlying combinatorial problem of current cancer phylogenetics methods is the Perfect Phylogeny Mixture (PPM) problem, where, given an m-by-n mutation frequency matrix F, the task is to infer a two-state perfect phylogeny tree T that explains the composition of the m mixed samples and the evolutionary history of the n mutations. This problem is not only nondeterministic polynomial time (NP) complete, but it also exhibits non-uniqueness of solutions, i.e. multiple perfect phylogeny trees T may explain a single input mutation frequency matrix F. Multiple solutions may lead to alternate conclusions in downstream analyses in cancer genomics. Thus, it is important to accurately and completely characterize the solution space by, for instance, generating solutions uniformly at random. However, current methods are unable to do so. This project will address these shortcomings through the following three research activities. First, this project will characterize conditions for statistical identifiability for the PPM model, which is a fundamental question in phylogenetics. Second, this project will develop almost uniform sampling and approximate counting algorithms that incorporate a probabilistic data error model. Third, the team of researchers will apply the resulting algorithms in a variety of downstream analyses in cancer to assess robustness of conclusions in the light of uncertainty due to non-uniqueness. Importantly, the new mathematical and computational techniques developed as part of this project will be applicable to other settings where multiple optima are encountered.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
癌症是由于进化过程而导致的,在此过程中,突变在细胞群中积累,导致在同一肿瘤中存在不同的细胞种群,并具有不同的突变补体。因此,要了解和治疗癌症,研究人员必须通过进化的角度看待疾病。系统发育树或系统发育是数学模型,用于描述目前观察到的实体的进化历史和关系。传统上,它们被应用于研究生物物种和语言。在癌症的背景下,肿瘤系统发育对于提高我们对癌症进展的基本机制的理解至关重要,并制定了针对患者肿瘤独特进化史的个性化癌症治疗计划。该项目解决了癌症系统发育学特征的挑战,即来自混合肿瘤样品的系统发育,这是当前癌症测序研究的大多数。尽管传统系统发育学中的生物样品包含来自具有相同基因组细胞的序列,但混合肿瘤样品由来自具有不同基因组细胞的序列组成。因此,可以从相同的混合输入样品中推断出多个系统发育树,这有可能导致癌症下游临床和基础科学分析的分歧。为了应对这一挑战,该项目寻求新的算法,理论和实际实现,以表征解决混合肿瘤样品的系统发育估计中的溶液空间。此外,该奖项将通过课程和外展模块设计在各个级别上的学生进行进步,培训和教育。当前癌症系统发育方法方法的潜在组合问题是完美的系统发育混合物(PPM)问题,在给定M-BY-N突变频率矩阵F中,任务是推断两态完美的系统发育树T,解释了M混合样品的组成和N突变的进化史。这个问题不仅是不确定的多项式时间(NP)完整,而且还表现出非唯一性,即多个完美的系统发育树T可能解释了单个输入突变频率矩阵F。多个溶液可能会导致癌症下游分析中的其他结论。因此,重要的是要通过例如随机生成溶液来准确并完全表征解决方案空间。但是,当前的方法无法做到。该项目将通过以下三项研究活动解决这些缺点。首先,该项目将表征PPM模型的统计可识别性条件,PPM模型是系统发育学的一个基本问题。其次,该项目将开发几乎均匀的采样和近似计数算法,以结合概率数据误差模型。第三,研究人员将在癌症的各种下游分析中应用所得算法,以根据不确定性而评估结论的稳健性。重要的是,作为该项目的一部分开发的新数学和计算技术将适用于遇到多个Optima的其他环境。该奖项反映了NSF的法定任务,并被认为是通过基金会的智力优点和更广泛影响的评估标准通过评估来获得支持的。

项目成果

期刊论文数量(18)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Implications of non-uniqueness in phylogenetic deconvolution of bulk DNA samples of tumors
  • DOI:
    10.1186/s13015-019-0155-6
  • 发表时间:
    2019-09-03
  • 期刊:
  • 影响因子:
    1
  • 作者:
    Qi, Yuanyuan;Pradhan, Dikshant;El-Kebir, Mohammed
  • 通讯作者:
    El-Kebir, Mohammed
Parsimonious Clone Tree Reconciliation in Cancer
  • DOI:
    10.4230/lipics.wabi.2021.9
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    P. Sashittal;Simone Zaccaria;M. El-Kebir
  • 通讯作者:
    P. Sashittal;Simone Zaccaria;M. El-Kebir
Sampling and summarizing transmission trees with multi-strain infections
多菌株感染传播树的采样和总结
  • DOI:
    10.1093/bioinformatics/btaa438
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    5.8
  • 作者:
    Sashittal, Palash;El-Kebir, Mohammed
  • 通讯作者:
    El-Kebir, Mohammed
Emerging Topics in Cancer Evolution
癌症进化的新兴话题
ClonArch: visualizing the spatial clonal architecture of tumors
  • DOI:
    10.1093/bioinformatics/btaa471
  • 发表时间:
    2020-04
  • 期刊:
  • 影响因子:
    5.8
  • 作者:
    Jiaqi Wu;M. El-Kebir
  • 通讯作者:
    Jiaqi Wu;M. El-Kebir
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mohammed El-Kebir其他文献

Mohammed El-Kebir的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mohammed El-Kebir', 18)}}的其他基金

CAREER: Algorithms for Comprehensive and Cost-effective Cancer Phylogeny Inference from Multi-omics Single-cell Sequencing Data
职业:从多组学单细胞测序数据中进行全面且经济有效的癌症系统发育推断的算法
  • 批准号:
    2046488
  • 财政年份:
    2021
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Continuing Grant
RAPID: Deciphering Within-host Diversity and Multi-strain Infections in COVID-19
RAPID:破译 COVID-19 中宿主内的多样性和多菌株感染
  • 批准号:
    2027669
  • 财政年份:
    2020
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant

相似国自然基金

H2S介导剪接因子BraU2AF65a的S-巯基化修饰促进大白菜开花的分子机制
  • 批准号:
    32372727
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
AF9通过ARRB2-MRGPRB2介导肠固有肥大细胞活化促进重症急性胰腺炎发生MOF的研究
  • 批准号:
    82300739
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
剪接因子U2AF1突变在急性髓系白血病原发耐药中的机制研究
  • 批准号:
    82370157
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
线粒体活性氧介导的胎盘早衰在孕期双酚AF暴露致婴幼儿神经发育迟缓中的作用
  • 批准号:
    82304160
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
U2AF2-circMMP1调控能量代谢促进结直肠癌肝转移的分子机制
  • 批准号:
    82303789
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CCF: AF: Medium: Towards Optimal Pseudorandomness
CCF:AF:中:走向最佳伪随机性
  • 批准号:
    2312573
  • 财政年份:
    2023
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Continuing Grant
AF: Small: Towards New Relaxations for Online Algorithms
AF:小:在线算法的新放松
  • 批准号:
    2224718
  • 财政年份:
    2022
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
NSF-BSF: Small: AF: Towards a Unified Theory of Spanners
NSF-BSF:小:AF:迈向扳手的统一理论
  • 批准号:
    2121952
  • 财政年份:
    2021
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
AF: Small: RUI: Towards Resolving the Dynamic Optimality Conjecture.
AF:小:RUI:解决动态最优猜想。
  • 批准号:
    1910873
  • 财政年份:
    2019
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
AF: Small: Towards Sturdier Geometric Algorithms
AF:小:迈向更坚固的几何算法
  • 批准号:
    1907400
  • 财政年份:
    2019
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了