S&AS: INT: COLLAB: Goal-driven Marine Autonomy with Application to Fisheries Science and Management

S

基本信息

  • 批准号:
    1848945
  • 负责人:
  • 金额:
    $ 22.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-02-15 至 2022-01-31
  • 项目状态:
    已结题

项目摘要

Marine robots can be used to accurately map and track marine life, leading to a better interpretation of variability and migration patterns that are important to fisheries managers in marine protected areas (MPAs). Principles of engineering and oceanography can be used to maximize the impact of a network of marine robots, but because fisheries managers, oceanographers, and roboticists have different perspectives and knowledge bases, it can be difficult to take advantage of cutting-edge research in each field without significant effort to translate among the groups. Researchers will develop a computational interface that translates human-specified missions of fisheries managers into multi-level planning for a fleet of marine robots to monitor fish populations in a dynamic coastal ocean environment. The system will be designed with input from fisheries managers through a series of workshops, and will be field-tested at Gray's Reef National Marine Sanctuary, a federally-managed MPA off the coast of Georgia. The research will lead to more accurate and effective ways to monitor fish populations in MPAs, as well as breakthroughs in key areas of artificial intelligence and autonomous systems. Many of the results will be applicable to other smart and autonomous systems in challenging environments. In addition, the project will train graduate students and broaden undergraduate education in Science, Technology, Engineering, and Mathematics (STEM), and offer a number of outreach activities, including working with the University of Georgia Marine Extension service to develop a summer camp for middle and high school students.The project is focused on developing an intelligent physical system (IPS) that consists of a heterogeneous fleet of marine robots, cooperatively tracking fish movement and surveying the habitat with minimum request for human intervention. The IPS will translate the human-specified missions of fisheries managers into goal-driven task designs for each robot, and automatically generate executable plans for the networked mobile sensing agents. The system will autonomously and persistently collect in-situ measurements and acoustic detections of fish species while maintaining multi-scale data streams and constructing multiple spatial-temporal maps reflecting the conditions of the ecosystem. The research aims to discover the hotspots (e.g., spatial locations with sustained congregations of fish), as well as illuminate more information about how and when fish move among these hotspots. This goal is quite challenging due to a number of gaps between project needs and the state-of-art autonomy research. Researchers will address the challenges through new developments that accomplish three main tasks: (1) Developing the goal-driven marine autonomy for fish habitat survey, (2) realizing the goal-driven autonomy on physical systems, and (3) evaluating the developed framework through real-life field work, experiments, and data analysis.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
海洋机器人可用于准确绘制和跟踪海洋生物,从而更好地解释变化和迁徙模式,这对于海洋保护区(MPA)的渔业管理者非常重要。 工程和海洋学原理可用于最大限度地发挥海洋机器人网络的影响,但由于渔业管理者、海洋学家和机器人专家拥有不同的观点和知识基础,因此很难利用每个领域的尖端研究无需付出巨大努力在各组之间进行翻译。研究人员将开发一个计算接口,将渔业管理者的人类指定任务转化为海洋机器人舰队的多层次规划,以监测动态沿海海洋环境中的鱼类种群。该系统将根据渔业管理人员通过一系列研讨会提供的意见进行设计,并将在格雷礁国家海洋保护区(乔治亚州海岸附近的一个联邦管理的海洋保护区)进行现场测试。 该研究将带来更准确、更有效的方法来监测海洋保护区的鱼类种群,并在人工智能和自主系统的关键领域取得突破。许多结果将适用于具有挑战性的环境中的其他智能和自主系统。 此外,该项目还将培训研究生并扩大科学、技术、工程和数学 (STEM) 方面的本科教育,并提供一系列外展活动,包括与佐治亚大学海洋推广服务部门合作,为学生举办夏令营该项目的重点是开发一种智能物理系统(IPS),该系统由异构海洋机器人组成,能够合作跟踪鱼类运动并调查栖息地,而对人类干预的要求最低。 IPS 将把渔业管理人员指定的任务转化为每个机器人的目标驱动任务设计,并自动为联网移动传感代理生成可执行计划。该系统将自主、持续地收集鱼类物种的原位测量和声学检测,同时维护多尺度数据流并构建反映生态系统状况的多个时空地图。该研究旨在发现热点(例如,鱼类持续聚集的空间位置),并阐明有关鱼类如何以及何时在这些热点之间移动的更多信息。由于项目需求与最先进的自主研究之间存在许多差距,这一目标相当具有挑战性。研究人员将通过新的发展来应对挑战,完成三个主要任务:(1)开发鱼类栖息地调查的目标驱动的海洋自主,(2)实现物理系统的目标驱动的自主,以及(3)评估所开发的框架通过现实生活中的实地工作、实验和数据分析。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优点和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(17)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Time-difference-of-arrival (TDOA)-based distributed target localization by a robotic network
机器人网络基于到达时间差 (TDOA) 的分布式目标定位
Backstepping Control of Gliding Robotic Fish for Trajectory Tracking in 3D Space
  • DOI:
    10.23919/acc45564.2020.9147628
  • 发表时间:
    2020-07
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Demetris Coleman;Xiaobo Tan
  • 通讯作者:
    Demetris Coleman;Xiaobo Tan
Randomized Sensor Selection for Nonlinear Systems With Application to Target Localization
  • DOI:
    10.1109/lra.2019.2928208
  • 发表时间:
    2019-07
  • 期刊:
  • 影响因子:
    5.2
  • 作者:
    S. Bopardikar;Osama Ennasr;Xiaobo Tan
  • 通讯作者:
    S. Bopardikar;Osama Ennasr;Xiaobo Tan
Observability-aware Target Tracking with Range Only Measurement
通过仅范围测量进行可观测性目标跟踪
Adaptive Parameter Estimation of a Steerable Drifter
可操纵漂流器的自适应参数估计
  • DOI:
    10.1016/j.ifacol.2021.11.161
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Gaskell, Eric;Tan, Xiaobo
  • 通讯作者:
    Tan, Xiaobo
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xiaobo Tan其他文献

Evolutionary Design and Experimental Validation of a Flexible Caudal Fin for Robotic Fish
机器鱼柔性尾鳍的进化设计和实验验证
  • DOI:
    10.7551/978-0-262-31050-5-ch043
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. Clark;Jared M. Moore;Jianxun Wang;Xiaobo Tan;P. McKinley
  • 通讯作者:
    P. McKinley
Diatomological mapping of water bodies in Chongqing section of the Yangtze River and Jialing River
长江、嘉陵江重庆段水体硅藻土测绘
  • DOI:
    10.1007/s00414-020-02297-x
  • 发表时间:
    2020-04
  • 期刊:
  • 影响因子:
    2.1
  • 作者:
    Li Zhang;Qianyun Nie;Yalei Dai;Shisheng Zhu;Jinbao Wang;Wei Wang;Xiaobo Tan;Peng Zhang;Jianbo Li
  • 通讯作者:
    Jianbo Li
Design and analysis of a sliding mode controller for systems with hysteresis
滞环系统滑模控制器的设计与分析
Soft mechatronics: an emerging design paradigm for the conception of intrinsically compliant electro-mechanical systems
软机电一体化:一种新兴的设计范例,用于本质上兼容的机电系统概念
  • DOI:
    10.1007/s11012-015-0307-9
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    G. Berselli;Xiaobo Tan;R. Vertechy
  • 通讯作者:
    R. Vertechy
Cycle-to-cycle response of ionic polymer-metal composite materials subject to pulsing flow-induced stimulus
脉冲流诱导刺激下离子聚合物-金属复合材料的周期响应

Xiaobo Tan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Xiaobo Tan', 18)}}的其他基金

I-Corps: Autonomous Aquabots for Water Main Inspections
I-Corps:用于水管检查的自主 Aquabot
  • 批准号:
    2345478
  • 财政年份:
    2024
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
FRR: Collaborative Research: Unsupervised Active Learning for Aquatic Robot Perception and Control
FRR:协作研究:用于水生机器人感知和控制的无监督主动学习
  • 批准号:
    2237577
  • 财政年份:
    2023
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
NRT-HDR: WaterCube: Big Data Water Science for Sustainability and Equity
NRT-HDR:WaterCube:大数据水科学促进可持续发展和公平
  • 批准号:
    2244164
  • 财政年份:
    2023
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
Collaborative Research: FW-HTF-P: Efficient Inspection of Unpiggable Pipelines through Human-Robot Integration
合作研究:FW-HTF-P:通过人机集成有效检查不可清管的管道
  • 批准号:
    2222635
  • 财政年份:
    2022
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
RI: Small: Collaborative Research: Information-driven Autonomous Exploration in Uncertain Underwater Environments
RI:小型:协作研究:不确定水下环境中信息驱动的自主探索
  • 批准号:
    1715714
  • 财政年份:
    2017
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
CPS: Synergy: Tracking Fish Movement with a School of Gliding Robotic Fish
CPS:协同作用:用一群滑翔机器鱼跟踪鱼的运动
  • 批准号:
    1446793
  • 财政年份:
    2014
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
Novel Vanadium Dioxide-based Self-Sensing Microactuators: Modeling, Control, and Application to Micromanipulation
新型二氧化钒基自传感微执行器:建模、控制及其在微操作中的应用
  • 批准号:
    1301243
  • 财政年份:
    2013
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
RI: Small: Collaborative Research: Bio-inspired Collaborative Sensing with Novel Gliding Robotic Fish
RI:小型:协作研究:新型滑翔机器鱼的仿生协作传感
  • 批准号:
    1319602
  • 财政年份:
    2013
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Continuing Grant
CyberSEES: Type 2: Towards Sustainable Aquatic Ecosystems: A New Adaptive Sampling and Data-Enabled Monitoring and Modeling Framework
Cyber​​SEES:类型 2:迈向可持续水生生态系统:新的自适应采样和数据支持的监测和建模框架
  • 批准号:
    1331852
  • 财政年份:
    2013
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
AIR Option 1: Technology Translation: Gliding Robotic Fish for Long-duration Sensing in Aquatic Environments
AIR选项1:技术转化:滑翔机器鱼在水生环境中进行长时间传感
  • 批准号:
    1343413
  • 财政年份:
    2013
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant

相似国自然基金

隐秘重组信号序列INT-RSS在T细胞受体基因Tcra重排中的功能和机制研究
  • 批准号:
    32370939
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
选择性PPARγ激动剂INT131调控适应性产热和AD-MSCs分化成棕色样脂肪细胞的机制研究
  • 批准号:
    81903680
  • 批准年份:
    2019
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
INT复合物调节U snRNA 3'加工的结构基础
  • 批准号:
    31800624
  • 批准年份:
    2018
  • 资助金额:
    28.0 万元
  • 项目类别:
    青年科学基金项目
沉默Int6基因的骨髓间充质干细胞复合生物支架构建血管化腹股沟疝补片及其促补片血管化机制
  • 批准号:
    81371698
  • 批准年份:
    2013
  • 资助金额:
    70.0 万元
  • 项目类别:
    面上项目
HIF/Int6调控迟发型EPC体外增殖的机制及其治疗重度子痫前期的可行性
  • 批准号:
    81100439
  • 批准年份:
    2011
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

S&AS: INT: COLLAB: Goal-driven Marine Autonomy with Application to Fisheries Science and Management
S
  • 批准号:
    1849137
  • 财政年份:
    2019
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
S&AS: INT: COLLAB: Goal-driven Marine Autonomy with Application to Fisheries Science and Management
S
  • 批准号:
    1849228
  • 财政年份:
    2019
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
S&AS: INT: COLLAB: Do the Right Thing: Competing Ethical Frameworks Mediated by Moral Emotions in Human Robot Interaction
S
  • 批准号:
    1849068
  • 财政年份:
    2019
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
S&AS:INT:COLLAB:Do the Right Thing: Competing Ethical Frameworks Mediated by Moral Emotions in Human-robot Interaction
S
  • 批准号:
    1848974
  • 财政年份:
    2019
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了