SCC: Building Safe and Secure Communities through Real-Time Edge Video Analytics
SCC:通过实时边缘视频分析构建安全可靠的社区
基本信息
- 批准号:1831795
- 负责人:
- 金额:$ 189.75万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-10-01 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The emergence of intelligent technologies is enabling a new era of connection between community residents and the surrounding environments, both in the United States and around the world. With the new wave of growth in urban areas, ensuring public safety is an essential precursor toward "smart" cities and communities. This project proposes a novel "intelligent" policing technology as a transformative solution to efficiently enhance law enforcement, while minimizing unnecessary interactions and maintaining resident privacy. The proposed technology offers a network of smart cameras that do not require continuous monitoring, but instead are trained to generate alerts on the spot in real-time. Since the cameras identify behaviors and not identities, they can reduce biases, minimize false alarms, and protect personal privacy. The intelligent policing technology will be co-designed and co-created with the direct help of community residents, neighborhood leaders, and local business owners, as well as agencies including the City of Charlotte, and local law enforcement agencies in Charlotte-Mecklenburg and Gaston counties. The proposed research makes fundamental advances in multiple areas from computer vision, computer architecture, and real-time edge computing, as well as criminology and community-technology interaction. It paves the path for bringing the recent advances in deep learning and data analytics to enhance the safety and security of communities without jeopardizing the privacy of residents. To this end, this project formulates social-technical advances to efficiently analyze and assist communities and governing agencies in making real-time, smart reactions. The project enables real-time vision processing near the cameras (edge nodes) and cooperative processing over the edge network. At the same time, the proposed research interprets, formalizes, and models public safety and security events to be machine detectable, reducing biases, and enabling broad-based community support and trust. By demonstrating the use of powerful emerging edge computing technologies, the project will highlight the applicability and adaptability of such technologies to tackle many community challenges and broader smart cities and cyber-physical systems (CPS) applications, including smart transportation and pedestrian safety. Additionally, the proposed community-based pilots will serve as exemplars to other communities across the nation.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
智能技术的出现正在开启美国和世界各地社区居民与周围环境之间连接的新时代。随着城市地区的新一轮增长,确保公共安全是迈向“智慧”城市和社区的重要前提。该项目提出了一种新颖的“智能”警务技术作为变革性解决方案,以有效加强执法,同时最大限度地减少不必要的互动并维护居民隐私。拟议的技术提供了一个智能摄像头网络,不需要持续监控,而是经过训练可以实时生成警报。由于摄像头识别的是行为而不是身份,因此它们可以减少偏见,最大限度地减少误报并保护个人隐私。智能警务技术将在社区居民、社区领导和当地企业主以及包括夏洛特市、夏洛特-梅克伦堡和加斯顿当地执法机构在内的机构的直接帮助下共同设计和共同创建县。拟议的研究在计算机视觉、计算机体系结构、实时边缘计算以及犯罪学和社区技术交互等多个领域取得了根本性进展。它为利用深度学习和数据分析的最新进展铺平了道路,以在不损害居民隐私的情况下增强社区的安全和保障。为此,该项目制定了社会技术进步,以有效分析和协助社区和管理机构做出实时、智能的反应。该项目支持摄像机(边缘节点)附近的实时视觉处理和边缘网络上的协作处理。与此同时,拟议的研究对公共安全和安保事件进行解释、形式化和建模,使其可被机器检测,减少偏见,并实现广泛的社区支持和信任。通过展示强大的新兴边缘计算技术的使用,该项目将强调此类技术的适用性和适应性,以应对许多社区挑战以及更广泛的智能城市和网络物理系统(CPS)应用,包括智能交通和行人安全。此外,拟议的基于社区的试点项目将成为全国其他社区的典范。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
EfficientHRNet: Efficient and scalable high-resolution networks for real-time multi-person 2D human pose estimation
EfficientHRNet:用于实时多人 2D 人体姿态估计的高效且可扩展的高分辨率网络
- DOI:10.1007/s11554-021-01132-9
- 发表时间:2021-08
- 期刊:
- 影响因子:3
- 作者:Neff, Christopher;Sheth, Aneri;Furgurson, Steven;Middleton, John;Tabkhi, Hamed
- 通讯作者:Tabkhi, Hamed
REVAMP 2 T: Real-Time Edge Video Analytics for Multicamera Privacy-Aware Pedestrian Tracking
REVAMP 2 T:用于多摄像头隐私感知行人跟踪的实时边缘视频分析
- DOI:10.1109/jiot.2019.2954804
- 发表时间:2020-04
- 期刊:
- 影响因子:10.6
- 作者:Neff, Christopher;Mendieta, Matias;Mohan, Shrey;Baharani, Mohammadreza;Rogers, Samuel;Tabkhi, Hamed
- 通讯作者:Tabkhi, Hamed
Mez: An Adaptive Messaging System for Latency-Sensitive Multi-Camera Machine Vision at the IoT Edge
- DOI:10.1109/access.2021.3055775
- 发表时间:2024-09-13
- 期刊:
- 影响因子:3.9
- 作者:Anjus George;A. Ravindran;Mat'ias Mendieta;Hamed Tabkhi
- 通讯作者:Hamed Tabkhi
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hamed Tabkhi其他文献
CARPe Posterum: A Convolutional Approach for Real-time Pedestrian Path Prediction
CARPe Posterum:实时行人路径预测的卷积方法
- DOI:
10.1609/aaai.v35i3.16335 - 发表时间:
2020-05-26 - 期刊:
- 影响因子:5.2
- 作者:
Mat'ias Mendieta;Hamed Tabkhi - 通讯作者:
Hamed Tabkhi
Exploring the Efficiency of the OpenCL Pipe Semantic on an FPGA
探索 FPGA 上 OpenCL 管道语义的效率
- DOI:
10.1145/2927964.2927974 - 发表时间:
2016-04-22 - 期刊:
- 影响因子:0
- 作者:
Amir Momeni;Hamed Tabkhi;Yash Ukidave;G. Schirner;D. Kaeli - 通讯作者:
D. Kaeli
A Comprehensive Survey of Graph-based Deep Learning Approaches for Anomaly Detection in Complex Distributed Systems
复杂分布式系统中基于图的深度学习异常检测方法的综合综述
- DOI:
10.48550/arxiv.2206.04149 - 发表时间:
2024-09-14 - 期刊:
- 影响因子:0
- 作者:
Armin Danesh Pazho;Ghazal Alinezhad Noghre;Arnab A. Purkayastha;Jagannadh Vempati;Otto Martin;Hamed Tabkhi - 通讯作者:
Hamed Tabkhi
An Asymmetric Checkpointing and Rollback Error Recovery Scheme for Embedded Processors
嵌入式处理器的非对称检查点和回滚错误恢复方案
- DOI:
10.1109/dft.2008.27 - 发表时间:
2008-10-01 - 期刊:
- 影响因子:0
- 作者:
Hamed Tabkhi;S. Miremadi;A. Ejlali - 通讯作者:
A. Ejlali
Taming the Memory Demand Complexity of Adaptive Vision Algorithms
降低自适应视觉算法的内存需求复杂性
- DOI:
10.1007/978-3-319-90023-0_12 - 发表时间:
2015-11-03 - 期刊:
- 影响因子:0
- 作者:
Majid Sabbagh;Hamed Tabkhi;G. Schirner - 通讯作者:
G. Schirner
Hamed Tabkhi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hamed Tabkhi', 18)}}的其他基金
I-Corps: Privacy-Responsive Artificial Intelligence-Based Solution for Smart Video Surveillance
I-Corps:基于隐私敏感的人工智能的智能视频监控解决方案
- 批准号:
2323757 - 财政年份:2023
- 资助金额:
$ 189.75万 - 项目类别:
Standard Grant
PFI-TT: Behavioral Analysis for Safer Communities: Fair and Ethical AI for Trusted Surveillance
PFI-TT:行为分析,打造更安全的社区:公平且符合道德的 AI,实现可信监控
- 批准号:
2329816 - 财政年份:2023
- 资助金额:
$ 189.75万 - 项目类别:
Continuing Grant
CPS: Small: Worker-in-the-loop real time safety system for short-duration highway workzones
CPS:小型:适用于短期高速公路工作区的工人循环实时安全系统
- 批准号:
1932524 - 财政年份:2019
- 资助金额:
$ 189.75万 - 项目类别:
Standard Grant
SCC-Planning: Pedestrian Safe and Secure Communities with Ambient Machine Vision
SCC-Planning:利用环境机器视觉打造安全可靠的行人社区
- 批准号:
1737586 - 财政年份:2017
- 资助金额:
$ 189.75万 - 项目类别:
Standard Grant
相似国自然基金
应对建筑安全风险:基于虚拟现实技术的建筑工人冒险行为决策机制和干预研究
- 批准号:72301110
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于三维空间态势感知的建筑机械不安全行为风险动态评估及预警研究
- 批准号:72301043
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
安全导向的建筑立体绿化抗风特性与优化设计研究
- 批准号:52378026
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
应对建筑工人“老龄化”的安全健康风险:基于虚拟现实和可穿戴设备的作业风险管理研究
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:面上项目
基于多要素分析的南方既有住区建筑综合品质与安全性提升更新方法研究--以深圳为例
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:
相似海外基金
Building a Safe, Healthy, and Respectful Workplace for Tradeswomen: A Total Worker Health Approach.
为女商人建立一个安全、健康和相互尊重的工作场所:全面工人健康方法。
- 批准号:
10571570 - 财政年份:2023
- 资助金额:
$ 189.75万 - 项目类别:
The Human-Tech Nexus - Building a Safe Haven to cope with Climate Extremes
人类与技术的联系——建立应对极端气候的避风港
- 批准号:
10053873 - 财政年份:2022
- 资助金额:
$ 189.75万 - 项目类别:
EU-Funded
(the HuT): The Human-Tech Nexus - Building a Safe Haven to cope with Climate Extremes
(HuT):人类与技术的联系 - 建立应对极端气候的避风港
- 批准号:
10050773 - 财政年份:2022
- 资助金额:
$ 189.75万 - 项目类别:
EU-Funded
The Human-Tech Nexus - Building a Safe Haven to cope with Climate Extremes
人类与技术的联系——建立应对极端气候的避风港
- 批准号:
10053774 - 财政年份:2022
- 资助金额:
$ 189.75万 - 项目类别:
EU-Funded
Canada-UK Quantum Technologies call: Building a standardised quantum-safe networking architecture
加拿大-英国量子技术公司呼吁:建立标准化的量子安全网络架构
- 批准号:
556330-2020 - 财政年份:2021
- 资助金额:
$ 189.75万 - 项目类别:
Alliance Grants