CAREER: An Approach to Pricing, Hedging, Stability, and Asymptotic Analysis in Financial Markets

职业:金融市场的定价、对冲、稳定性和渐近分析方法

基本信息

  • 批准号:
    1848339
  • 负责人:
  • 金额:
    $ 42万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-09-01 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

As financial markets have not only grown but have also become very complex, understanding both their qualitative and quantitative aspects are among highly active areas of research in mathematics. This award provides methods for pricing, hedging, stability and asymptotic analysis in financial markets. These projects will further our understanding of so-called incomplete markets (i.e., the markets which have a limited capability to offset risks) and the sensitivity of such markets to different types of perturbations and trading restrictions. The topics will lead to new developments in stochastic control, convex and stochastic analysis, to novel interdisciplinary research, and results applicable in the financial industry. Graduate students and post doctoral researchers are included in the work of the project.The first research topic is stability and asymptotic analysis of financial markets with respect to perturbations. Mathematically this topic leads to investigations of the responses of the underlying stochastic control problems to distortions of the input data. An appropriate form of parametrization for the perturbations and the corresponding value functions will allow for analysis involving only partial convexity (in one variable) of the underlying value function. Both dynamic and static formulations of the underlying stochastic control problem will be considered. The second topic is the pricing and hedging of financial instruments when additional trading constraints are imposed. This topic is connected to an investigation of the optimal investment problem with labor income, where extra trading constraints make the problem hard to analyze, and special forms of parametrization of the labor income and the value function are needed. The mathematical work relies on classical and modern results in stochastic analysis, stochastic control, finite and infinite-dimensional convex analysis, and new results to be established by the Principal Investigator.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
由于金融市场不仅增长了,而且变得非常复杂,因此了解它们的定性和定量方面都是数学研究的高度活跃领域。该奖项提供了金融市场中定价,套期保值,稳定和渐近分析的方法。这些项目将进一步了解我们对所谓不完整市场的理解(即,抵消风险能力的市场有限)以及此类市场对不同类型的扰动和交易限制的敏感性。该主题将导致随机控制,凸和随机分析的新发展,以进行新的跨学科研究,并适用于金融行业。研究生和博士后研究人员被包括在项目的工作中。第一个研究主题是对金融市场的稳定性和渐近分析。从数学上讲,该主题导致对潜在随机控制问题对输入数据扭曲的响应进行了研究。用于扰动和相应值函数的参数化形式的适当形式将允许仅涉及基础值函数的部分凸度(一个变量)的分析。将考虑潜在随机控制问题的动态和静态公式。第二个主题是当施加其他交易限制时,金融工具的定价和对冲。该主题与对劳动收入的最佳投资问题的调查有关,劳动收入的额外交易限制使问题难以分析,并且需要对劳动收入的参数化和价值功能的特殊形式。数学工作取决于随机分析,随机控制,有限和无限二维凸分析的经典和现代结果,以及首席研究员将建立的新结果。该奖项反映了NSF的法定任务,并已通过评估该基金会的知识功能和广泛的影响来评估NSF的法定任务。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Stability and asymptotic analysis of theFöllmer–Schweizer decomposition on a finite probability space
有限概率空间上Föllmer-Schweizer分解的稳定性和渐近分析
  • DOI:
    10.2140/involve.2020.13.607
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Boese, Sarah;Cui, Tracy;Johnston, Samuel;Molino, Gianmarco;Mostovyi, Oleksii
  • 通讯作者:
    Mostovyi, Oleksii
Quadratic expansions in optimal investment with respect to perturbations of the semimartingale model
最优投资相对于半鞅模型扰动的二次展开
  • DOI:
    10.1007/s00780-024-00532-6
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Mostovyi, Oleksii;Sîrbu, Mihai
  • 通讯作者:
    Sîrbu, Mihai
Asymptotic analysis of the expected utility maximization problem with respect to perturbations of the numéraire
关于计价扰动的预期效用最大化问题的渐近分析
Optimal investment and consumption with labor income in incomplete markets
不完全市场下劳动收入最优投资和消费
  • DOI:
    10.1214/19-aap1514
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    1.8
  • 作者:
    Mostovyi, Oleksii;Sîrbu, Mihai
  • 通讯作者:
    Sîrbu, Mihai
Differentiation of measures on an arbitrary measurable space
任意可测空间上的测度微分
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Oleksii Mostovyi其他文献

OPTIMAL INVESTMENT WITH INTERMEDIATE CONSUMPTION AND RANDOM ENDOWMENT
  • DOI:
    10.1111/mafi.12089
  • 发表时间:
    2011-10
  • 期刊:
  • 影响因子:
    1.6
  • 作者:
    Oleksii Mostovyi
  • 通讯作者:
    Oleksii Mostovyi
Necessary and sufficient conditions in the problem of optimal investment with intermediate consumption
中间消耗最优投资问题的充要条件
  • DOI:
    10.1007/s00780-014-0248-5
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Oleksii Mostovyi
  • 通讯作者:
    Oleksii Mostovyi
On the stability the least squares Monte Carlo
关于稳定性最小二乘蒙特卡罗
  • DOI:
    10.1007/s11590-011-0414-z
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    1.6
  • 作者:
    Oleksii Mostovyi
  • 通讯作者:
    Oleksii Mostovyi
PRICING OF CONTINGENT CLAIMS IN LARGE MARKETS
大市场中或有债权的定价
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Oleksii Mostovyi;Pietro Siorpaes
  • 通讯作者:
    Pietro Siorpaes
The information premium on a finite probability space
有限概率空间上的信息溢价

Oleksii Mostovyi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Oleksii Mostovyi', 18)}}的其他基金

Utility Based Pricing and Hedging in Incomplete Markets with Stochastic Preferences in a Unifying Framework of Admissibility
统一受理框架中具有随机偏好的不完全市场中基于效用的定价和对冲
  • 批准号:
    1600307
  • 财政年份:
    2015
  • 资助金额:
    $ 42万
  • 项目类别:
    Standard Grant
Utility Based Pricing and Hedging in Incomplete Markets with Stochastic Preferences in a Unifying Framework of Admissibility
统一受理框架中具有随机偏好的不完全市场中基于效用的定价和对冲
  • 批准号:
    1515842
  • 财政年份:
    2015
  • 资助金额:
    $ 42万
  • 项目类别:
    Standard Grant

相似国自然基金

效益最优的边云协同服务定价和任务调度方法研究
  • 批准号:
    62302221
  • 批准年份:
    2023
  • 资助金额:
    20.00 万元
  • 项目类别:
    青年科学基金项目
流域系统性治理下跨区域排污权市场交易综合定价方法研究
  • 批准号:
    72304204
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
激励分布式资源支撑灵活性与弹性提升的配网零售侧电价优化定价方法
  • 批准号:
    52307136
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
高维资产定价模型的求解方法研究:基于蒙特卡洛的理论与计算
  • 批准号:
    72303190
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
数据聚合查询服务交易理论与定价方法研究
  • 批准号:
    62372404
  • 批准年份:
    2023
  • 资助金额:
    50.00 万元
  • 项目类别:
    面上项目

相似海外基金

Social Learning, Consumer Search and Firms' Dynamic Strategies: A Theoretical Approach
社会学习、消费者搜索和企业动态策略:理论方法
  • 批准号:
    21K13300
  • 财政年份:
    2021
  • 资助金额:
    $ 42万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Asymptotic theoretic approach for pricing derivatives in the regime switching model
政权转换模型中衍生品定价的渐近理论方法
  • 批准号:
    19K01730
  • 财政年份:
    2019
  • 资助金额:
    $ 42万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Empirical Analysis on Environmental Voluntary Approaches in Japan
日本环境自愿方法的实证分析
  • 批准号:
    18K01615
  • 财政年份:
    2018
  • 资助金额:
    $ 42万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Pricing and forecasting of sovereign CDS premium with stochastic risk-free rate and default intensity
具有随机无风险利率和违约强度的主权 CDS 溢价的定价和预测
  • 批准号:
    18K01707
  • 财政年份:
    2018
  • 资助金额:
    $ 42万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Reinforcement learning approach to large scale dynamic pricing
大规模动态定价的强化学习方法
  • 批准号:
    510818-2017
  • 财政年份:
    2017
  • 资助金额:
    $ 42万
  • 项目类别:
    University Undergraduate Student Research Awards
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了