CAREER: Quantum Dynamics and Topology in Low Dimensional Systems

职业:低维系统中的量子动力学和拓扑

基本信息

  • 批准号:
    1848336
  • 负责人:
  • 金额:
    $ 49.89万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-07-01 至 2024-06-30
  • 项目状态:
    已结题

项目摘要

NONTECHNICAL SUMMARYThis CAREER award supports research and education on condensed matter systems that exhibit quantum mechanical behavior beyond the microscopic regime. Quantum mechanics lies at the foundation of many existing and emerging technologies. For example, computers, cell phones, and medical imaging devices, all have critical components that operate on quantum technology. In fact, the General Conference on Weights and Measures has recently adopted a standard of mass (i.e., the kilogram) that is based on principles of quantum mechanics. This project aims to develop and study a wide collection of quantum phenomena that may be used in the next step of the quantum revolution.While the world we live in is governed by quantum mechanics at the fundamental level, most macroscopic objects appear "classical" because quantum effects are often washed out at large distances. The goal of this project is to study how quantum behavior can survive beyond the microscopic regime. The PI and his team will look for ways in which fundamental particles, such as electrons, can be bound together similarly to how atoms form molecules. Conversely, the PI will also seek ways in which electrons can fractionalize, i.e., behave collectively as if they were split up into multiple particles. Crucial to this research is understanding how particles interact with one another.A critical component to the success of quantum technology is the widespread literacy in quantum mechanics. Quantum concepts, notably superposition and entanglement, lie at the heart of all device applications and yet are poorly understood by students in Science, Technology, Engineering, and Mathematics (STEM). The PI will develop and test self-guided tutorials that could be used to complement standard undergraduate/graduate education in physics to include quantum concepts. Once validated, these tutorials can be widely disseminated and used in STEM education. Ultimately, this project seeks to promote awareness and deeper understanding of quantum phenomena.TECHNICAL SUMMARYThis CAREER award supports research and education on condensed matter systems that exhibit quantum mechanical behavior and phenomenology beyond the microscopic regime. While the world we live in is governed by quantum mechanics at the fundamental level, most macroscopic objects appear "classical" because quantum effects are often washed out at large distances. For example, although the origin of ferromagnetism is quantum mechanical at the microscopic level, the phenomenology of magnets is well described via classical electromagnetism. The focus of this research is the study of effects that are macroscopically quantum, defying any effective classical description. Examples thereof include fractionalization, deconfined criticality, and many-body localization. The commonality shared by these effects is that they involve quantum dynamics and/or topology within strongly-interacting systems.The proposed research combines both analytical and numerical methods, to study quantum phenomena in a variety of theoretical models and experimental settings. The activities and goals of this proposal include: 1) Exploring the formation of composite excitations (such as pairs, trions, and tetrons) in low-dimensional systems, 2) Developing and testing algorithms that can simulate quantum dynamics, in order to study effects such as thermalization and localization in driven systems, 3) Finding new ways to extract topological invariants, such as Hall conductivity, from the static correlations of a many-body disordered system.This project will also entail improving public education in quantum mechanics, preparing future engineers and scientists for research in the 21st century and meeting the growing demand for quantum technologists. The PI will develop, test, and implement, self-guided tutorials on quantum many-body physics suitable for undergraduates and graduates in STEM. The tutorials will help students grasp abstract concepts in quantum many-body systems (such as entanglement), and will be based on learning models that emphasize scaffolded learning, peer-instruction, and weaning. These will be self-contained modular units that can be used to supplement traditional lectures, or be employed in independent self-study. The evaluation of this program will be published and the tutorials will be made available publicly to allow for wide dissemination and implementation across all interested institutions.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术摘要该职业奖支持凝聚态物质系统的研究和教育,这些系统表现出超越微观范围的量子力学行为。量子力学是许多现有和新兴技术的基础。例如,计算机、手机和医学成像设备都具有基于量子技术运行的关键组件。事实上,度量衡大会最近通过了基于量子力学原理的质量标准(即千克)。该项目旨在开发和研究可用于量子革命下一步的广泛量子现象。虽然我们生活的世界在基本层面上受到量子力学的控制,但大多数宏观物体显得“经典”,因为量子效应常常在远距离处被消除。该项目的目标是研究量子行为如何在微观范围之外生存。首席研究员和他的团队将寻找将电子等基本粒子结合在一起的方法,就像原子形成分子一样。相反,PI 还将寻求电子可以分裂的方法,即,它们集体表现得好像它们被分裂成多个粒子一样。这项研究的关键是了解粒子如何相互作用。量子技术成功的一个关键因素是量子力学的广泛普及。 量子概念,特别是叠加和纠缠,是所有设备应用的核心,但科学、技术、工程和数学 (STEM) 专业的学生对其了解甚少。 PI 将开发和测试自学教程,这些教程可用于补充标准的物理学本科/研究生教育,包括量子概念。一旦经过验证,这些教程就可以在 STEM 教育中广泛传播和使用。最终,该项目旨在提高对量子现象的认识和更深入的理解。技术摘要该职业奖支持对凝聚态物质系统的研究和教育,这些系统表现出超越微观体系的量子力学行为和现象学。虽然我们生活的世界在基本层面上受到量子力学的控制,但大多数宏观物体都显得“经典”,因为量子效应经常在很远的距离下被消除。例如,虽然铁磁性的起源是微观层面的量子力学,但磁体的现象学可以通过经典电磁学得到很好的描述。这项研究的重点是研究宏观量子效应,违背任何有效的经典描述。 其示例包括分段化、解除临界性和多体定位。这些效应的共同点是它们涉及强相互作用系统中的量子动力学和/或拓扑。所提出的研究结合了分析和数值方法,以研究各种理论模型和实验设置中的量子现象。 该提案的活动和目标包括:1)探索低维系统中复合激发(例如对、三重子和四重子)的形成,2)开发和测试可以模拟量子动力学的算法,以研究效应例如驱动系统中的热化和局域化,3) 寻找从多体无序系统的静态相关性中提取拓扑不变量(例如霍尔电导率)的新方法。该项目还将需要改善量子力学的公共教育,为未来做好准备工程师和科学家进行 21 世纪的研究并满足对量子技术人员日益增长的需求。 PI 将开发、测试和实施适合 STEM 本科生和研究生的量子多体物理自导教程。这些教程将帮助学生掌握量子多体系统中的抽象概念(例如纠缠),并将基于强调支架式学习、同伴指导和断奶的学习模型。 这些将是独立的模块化单元,可用于补充传统讲座,或用于独立自学。 该计划的评估结果将予以公布,教程将公开提供,以便在所有感兴趣的机构中广泛传播和实施。该奖项反映了 NSF 的法定使命,并通过利用基金会的智力优势和更广泛的评估进行评估,被认为值得支持。影响审查标准。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Universal tripartite entanglement signature of ungappable edge states
  • DOI:
    10.1103/physrevb.106.l041107
  • 发表时间:
    2021-10
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    K. Siva;Yijian Zou;T. Soejima;R. Mong;M. Zaletel
  • 通讯作者:
    K. Siva;Yijian Zou;T. Soejima;R. Mong;M. Zaletel
Electrical Probes of the Non-Abelian Spin Liquid in Kitaev Materials
  • DOI:
    10.1103/physrevx.10.031014
  • 发表时间:
    2020-07-17
  • 期刊:
  • 影响因子:
    12.5
  • 作者:
    Aasen, David;Mong, Roger S. K.;Alicea, Jason
  • 通讯作者:
    Alicea, Jason
Quantum spin liquids bootstrapped from Ising criticality in Rydberg arrays
  • DOI:
    10.1103/physrevb.106.115122
  • 发表时间:
    2022-03
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    K. Slagle;Yue Liu;D. Aasen;H. Pichler;R. Mong;Xie Chen;M. Endres;J. Alicea
  • 通讯作者:
    K. Slagle;Yue Liu;D. Aasen;H. Pichler;R. Mong;Xie Chen;M. Endres;J. Alicea
Microscopic characterization of Ising conformal field theory in Rydberg chains
里德伯链中伊辛共形场论的微观表征
  • DOI:
    10.1103/physrevb.104.235109
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Slagle, Kevin;Aasen, David;Pichler, Hannes;Mong, Roger S.;Fendley, Paul;Chen, Xie;Endres, Manuel;Alicea, Jason
  • 通讯作者:
    Alicea, Jason
Local formula for the Z2 invariant of topological insulators
拓扑绝缘体 Z2 不变量的局部公式
  • DOI:
    10.1103/physrevb.100.205101
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Li, Zhi;Mong, Roger S.
  • 通讯作者:
    Mong, Roger S.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Roger Mong其他文献

Roger Mong的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

多体量子电动力学理论与应用
  • 批准号:
    22373057
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
粲偶素稀有衰变的格点量子色动力学研究
  • 批准号:
    12305094
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于金刚石IV族色心量子信息器件的激发态动力学研究
  • 批准号:
    62304159
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于机器学习和经典电动力学研究中等尺寸金属纳米粒子的量子表面等离激元
  • 批准号:
    22373002
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
Cl+CH3D反应中费米耦合效应的高维量子动力学研究
  • 批准号:
    22373111
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

CAREER: Nonlinear Dynamics of Exciton-Polarons in Two-Dimensional Metal Halides Probed by Quantum-Optical Methods
职业:通过量子光学方法探测二维金属卤化物中激子极化子的非线性动力学
  • 批准号:
    2338663
  • 财政年份:
    2024
  • 资助金额:
    $ 49.89万
  • 项目类别:
    Continuing Grant
CAREER: Detecting Quantum Signatures in Nonadiabatic Molecular Dynamics
职业:检测非绝热分子动力学中的量子特征
  • 批准号:
    2340180
  • 财政年份:
    2024
  • 资助金额:
    $ 49.89万
  • 项目类别:
    Continuing Grant
Developing a nucleic acid force field with direct chemical perception for computational modeling of nucleic acid therapeutics
开发具有直接化学感知的核酸力场,用于核酸治疗的计算建模
  • 批准号:
    10678562
  • 财政年份:
    2023
  • 资助金额:
    $ 49.89万
  • 项目类别:
CAREER: Simulating Mesoscale Quantum Dynamics and Non-linear Microscopy
职业:模拟中尺度量子动力学和非线性显微镜
  • 批准号:
    2341178
  • 财政年份:
    2023
  • 资助金额:
    $ 49.89万
  • 项目类别:
    Continuing Grant
CAREER: New Regimes of Coherent Nonequilibrium Dynamics in Quantum Many-Body Systems
职业:量子多体系统中相干非平衡动力学的新机制
  • 批准号:
    2143635
  • 财政年份:
    2022
  • 资助金额:
    $ 49.89万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了