CAREER:Laser Cooling and Trapping of Beryllium: Frozen Plasmas and Precision Measurements

职业:铍的激光冷却和捕获:冷冻等离子体和精密测量

基本信息

  • 批准号:
    1848154
  • 负责人:
  • 金额:
    $ 48.35万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-04-01 至 2025-03-31
  • 项目状态:
    未结题

项目摘要

This CAREER award supports investigation of berillium (Be) as a new candidate element for the next generation of optical atomic clocks, as well as for producing an ultracold neutral plasma -- an ultracold gas of ions and electrons. Atomic clocks have been instrumental in the advancement of science and technology in the twentieth century, leading to innovations such as global positioning, advanced communications, and tests of fundamental theories of particle physics. A next generation optical atomic clock would extend the capabilities of these systems and will enable enhanced security for data routing and communications, advanced earth and space time-based navigation, and ever more precise testing of Einstein's Theory of General Relativity. Ultracold neutral plasmas (UCNPs) are laser produced plasmas that stretch the boundaries of traditional plasma physics. However, studies of these table-top ultracold systems are promising to greatly improve our understanding of much hotter and denser plasmas thought to occur in many astrophysical systems. The goal of this project is to laser cool, trap and photo-ionize neutral atomic beryllium for its potential use as an optical frequency standard, and to produce a UNCP at a sufficiently low temperature for ionic crystals to form inside the system, virtually freezing the plasma. This award will also make it possible to attract and retain more underrepresented minority students to physics studies. The project will involve minority graduate, undergraduate, and high school students via existing Univ. of Alabama - Birmingham programs to participate in research projects in the Simien Spectroscopy and Laser Cooling group. Additional outreach activities will aim to get K-12 students interested in science and engineering by performing physics and chemistry demonstrations at local schools in the region.This project is an experimental program directed towards investigation of spectroscopic, laser cooling, and photoionization properties of atomic beryllium as it relates to atomic clocks and ultracold neutral plasmas. Be is an alkaline earth element with a simple internal structure which provides for electric-dipole and intercombination transitions in the optical regions for both neutral atoms and ions. It is a promising candidate for next generation frequency standards and for laser cooling, trapping, and photo-ionization to produce an ultracold plasma. In particular, the spectroscopic studies will involve measurements of the hyperfine structure of strong electric dipole transitions. The objective of this study is to determine Be hyperfine constants, which define the ordering of the hyperfine peaks and contributions to the energy shifts from the magnetic dipole and electric quadrupole interactions. The determination of this spectroscopic property is necessary for implementing laser cooling and trapping of beryllium. In addition, laser cooling and trapping will be used to create a magneto-optical trap as the first step towards performing precision measurements on the intercombination lines. It will also be used for photoionization studies for generation of a Be based frequency standard and an ultracold neutral plasma that can be efficiently laser cooled into the strongly coupled regime. This project is jointly funded by the Plasma Physics program, the Atomic, Molecular and Optical Experimental Physics program, and the Established Program to Stimulate Competitive Research (EPSCoR).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该职业奖支持Berillium(BE)作为下一代光原子时钟的新候选元素,以及生产超低中性等离子体(一种超低离子和电子的超低气)。原子钟在20世纪的科学技术发展方面发挥了作用,从而导致了诸如粒子物理基本理论的全球定位,高级通信和测试等创新。下一代光原子时钟将扩展这些系统的功能,并为数据路由和通信,高级地球和时空导航以及对爱因斯坦一般相对论理论的更精确测试提供增强的安全性。超速中性等离子体(UCNP)是激光产生的等离子体,它扩展了传统等离子体物理学的边界。 但是,对这些台式超低系统的研究有望大大提高我们对许多天体物理系统中发生的更热和更密集的等离子体的理解。该项目的目的是激光凉爽,陷阱和光离子中性原子珠宝氏菌潜在用作光频率标准,并在足够低的温度下产生UNCP,以使离子晶体在系统内部形成,几乎使该系统冻结等离子体。 该奖项还可以吸引和保留更多代表性不足的少数民族学生参加物理学研究。 该项目将通过现有大学涉及少数群体毕业生,本科和高中生。阿拉巴马州 - 伯明翰计划参加Simien光谱和激光冷却小组的研究项目。其他外展活动将旨在通过在该地区的当地学校进行物理和化学演示来使K-12学生对科学和工程感兴趣。该项目是一个实验计划,用于调查光谱,激光冷却和光电离世原子berylllium的光电报。与原子钟和超低中性等离子体有关。 BE是一种碱性地球元素,具有简单的内部结构,可为中性原子和离子的光学区域中的电偶极和伴随性转变提供。 它是下一代频率标准标准和激光冷却,捕获和光电发的有前途的候选人,可产生超低等离子体。特别是,光谱研究将涉及测量强电偶极转变的超细结构。这项研究的目的是确定是超精细常数,该常数定义了超精细峰的排序以及对从磁偶极子和电二极管相互作用的能量转移的贡献。该光谱性特性的确定对于实施激光冷却和捕获铍是必要的。此外,激光冷却和捕获将用于创建一个磁光陷阱,作为在隔离线上进行精确测量的第一步。 它也将用于用于产生基于BE的频率标准和超速中性血浆的光电离心研究,可以有效地将激光冷却到强耦合方案中。 该项目由等离子体物理学计划,原子,分子和光学实验物理计划以及刺激竞争性研究的既定计划(EPSCOR)共同资助。该奖项反映了NSF的法定任务,并被认为是通过使用评估的值得进行的支持。基金会的智力优点和更广泛的影响评论标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Clayton Simien其他文献

Clayton Simien的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Clayton Simien', 18)}}的其他基金

PM: Atomic Physics Investigations of Rare Earth Elements: A Prologue to New Physics Beyond the Standard Model
PM:稀土元素的原子物理研究:超越标准模型的新物理学的序言
  • 批准号:
    2110521
  • 财政年份:
    2023
  • 资助金额:
    $ 48.35万
  • 项目类别:
    Standard Grant
Spectroscopic, Collisional, and Laser Cooling Studies of Atomic Gadolinium
原子钆的光谱、碰撞和激光冷却研究
  • 批准号:
    1404496
  • 财政年份:
    2014
  • 资助金额:
    $ 48.35万
  • 项目类别:
    Continuing Grant

相似国自然基金

激光冷却负离子
  • 批准号:
    12374244
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
冷原子系统中跳频锁定深紫外冷却激光的产生和应用研究
  • 批准号:
    62375284
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
镍基单晶冷却叶片气膜孔飞秒激光成形机理与形-质-性协同调控原理
  • 批准号:
    52375158
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于结构形态调控的飞秒激光加工高深宽比冷却微孔和微槽的方法研究
  • 批准号:
    12374290
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
脉冲激光驱动金属微滴高冷却速率沉积机理及其累积效应调控
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Accurate Electronic and Vibrational Structure Calculations of Metal-Containing Small Molecules of Importance to Precision Measurement and Laser Cooling
含金属小分子的精确电子和振动结构计算对于精密测量和激光冷却具有重要意义
  • 批准号:
    2309253
  • 财政年份:
    2023
  • 资助金额:
    $ 48.35万
  • 项目类别:
    Standard Grant
Atomic scale ion microscopy via laser cooling and correlated imaging
通过激光冷却和相关成像的原子级离子显微镜
  • 批准号:
    DP200103452
  • 财政年份:
    2021
  • 资助金额:
    $ 48.35万
  • 项目类别:
    Discovery Projects
Kinetic theory of subrecoil-laser-cooled gases based on infinite ergodic theory
基于无限遍历理论的亚反冲激光冷却气体动力学理论
  • 批准号:
    21K03392
  • 财政年份:
    2021
  • 资助金额:
    $ 48.35万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Probing laser cooling cycle of insulators on femtosecond timescales
在飞秒时间尺度上探测绝缘体的激光冷却周期
  • 批准号:
    563809-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 48.35万
  • 项目类别:
    University Undergraduate Student Research Awards
Optimised laser cooling of CaF molecules
CaF 分子的优化激光冷却
  • 批准号:
    2570027
  • 财政年份:
    2021
  • 资助金额:
    $ 48.35万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了