Development and Application of Efficient High-order Semi-Lagrangian Schemes
高效高阶半拉格朗日格式的开发与应用
基本信息
- 批准号:1830838
- 负责人:
- 金额:$ 5.56万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-08-16 至 2020-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Understanding behaviors of plasmas plays an increasingly important role in modern science and engineering such as thermo-nuclear fusion, satellite amplifier, and computer chip manufacturing. A fundamental model in plasma physics is the Vlasov-Maxwell system, which is a nonlinear kinetic transport model describing the dynamics of charged particles due to the self-consistent electromagnetic forces. As predictive simulation tools in studying the complex kinetic system, efficient, reliable and accurate transport schemes are of fundamental significance. The main numerical challenges in such studies lie in the high dimensionality, nonlinear coupling, and inherent multi-scale nature in both space and time. Another application concerned in this project is in atmospheric science. One example is the chemistry-climate model in the study of evolution of stratospheric ozone and many other chemical constituents. The present generation of global climate models include hundreds of tracer species in order to adequately represent complex physical and chemical processes, resulting in huge computational cost in computer simulations. The PI will develop and analyze a class of efficient, reliable and highly accurate numerical methods for transport problems in plasma physics and atmospheric science. A semi-Lagrangian framework will be devised by employing a high order discontinuous Galerkin spatial discretization to take advantage of its many attractive properties, such as flexibility, compactness, and excellent ability to resolve features involving multiple scales. By a careful design in the scheme formulation, the proposed scheme is free of splitting error and able to conserve total mass of the system. Motivated by the work of PI on developing a fast asymptotic preserving Maxwell solver that is capable of recovering the magneto-static limit, the temporal scale separation issue associated with the Vlasov-Maxwell simulations will be addressed. For the applications in the global chemistry-climate modeling, the new schemes can be conveniently adapted to the spherical transport simulations based on the cubed-sphere geometry. Theoretical issues including the stability analysis and error estimates will be investigated.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
了解等离子体的行为在热核聚变、卫星放大器和计算机芯片制造等现代科学和工程中发挥着越来越重要的作用。等离子体物理学的基本模型是弗拉索夫-麦克斯韦系统,它是一种非线性动力学输运模型,描述由于自洽电磁力而导致的带电粒子的动力学。作为研究复杂动力学系统的预测模拟工具,高效、可靠、准确的输运方案具有根本意义。此类研究的主要数值挑战在于高维性、非线性耦合以及空间和时间上固有的多尺度性质。该项目涉及的另一个应用是大气科学。一个例子是平流层臭氧和许多其他化学成分演化研究中的化学气候模型。目前的全球气候模型包括数百种示踪剂物种,以便充分表示复杂的物理和化学过程,导致计算机模拟中的计算成本巨大。 PI 将针对等离子体物理和大气科学中的输运问题开发和分析一类高效、可靠和高精度的数值方法。半拉格朗日框架将通过采用高阶不连续伽辽金空间离散化来设计,以利用其许多有吸引力的特性,例如灵活性、紧凑性以及解决涉及多个尺度的特征的出色能力。通过方案制定中的仔细设计,所提出的方案没有分裂误差,并且能够保存系统的总质量。受 PI 开发能够恢复静磁极限的快速渐近保持麦克斯韦求解器工作的推动,与 Vlasov-Maxwell 模拟相关的时间尺度分离问题将得到解决。对于全球化学-气候建模中的应用,新方案可以方便地适应基于立方球几何的球形输运模拟。将调查包括稳定性分析和误差估计在内的理论问题。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Wei Guo其他文献
Incidence and Prognostic Associations of Early Postoperative Stroke and Death Among Patients Undergoing Inner Branched Thoracic Endovascular Repair of Aortic Arch Pathologies: A Systematic Review and Meta-Analysis.
接受主动脉弓病变内分支胸腔血管内修复术的患者术后早期卒中和死亡的发生率和预后相关性:系统评价和荟萃分析。
- DOI:
10.1177/15266028231187715 - 发表时间:
2023-07-21 - 期刊:
- 影响因子:0
- 作者:
Jianghui Gao;Wei Guo;Hongpeng Zhang - 通讯作者:
Hongpeng Zhang
Prediction of Remaining Useful Life of Bearing Based on Long Short-Term Memory Network Optimized by Slime Mould Algorithm
基于粘菌算法优化的长短期记忆网络的轴承剩余使用寿命预测
- DOI:
10.1109/cac53003.2021.9728036 - 发表时间:
2021-10-22 - 期刊:
- 影响因子:0
- 作者:
Chuantao Zang;Ran Liu;Wei Guo;Hai - 通讯作者:
Hai
PSA-NUCA: A Pressure Self-Adapting Dynamic Non-uniform Cache Architecture
PSA-NUCA:压力自适应动态非均匀缓存架构
- DOI:
10.1109/nas.2012.27 - 发表时间:
2012-06-28 - 期刊:
- 影响因子:0
- 作者:
A. Huang;Jun Gao;Wei Guo;Wenqiang Shi;Minxuan Zhang;Jiang Jiang - 通讯作者:
Jiang Jiang
Facility Performance Indexes and Rapid Test Feasibility Evaluation Method of Shaking Tables
振动台设施性能指标及快速试验可行性评价方法
- DOI:
10.1007/s12205-019-2188-2 - 发表时间:
2019-06-05 - 期刊:
- 影响因子:2.2
- 作者:
Wei Guo;Zhipeng Zhai;Zhiwu Yu;Yan Long - 通讯作者:
Yan Long
Deep learning based structural damage identification for the strain field of a subway bolster
基于深度学习的地铁枕梁应变场结构损伤识别
- DOI:
10.1016/j.aej.2023.09.031 - 发表时间:
2023-10-01 - 期刊:
- 影响因子:6.8
- 作者:
Chengxing Yang;Liting Yang;Wei Guo;Ping Xu - 通讯作者:
Ping Xu
Wei Guo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Wei Guo', 18)}}的其他基金
Conference: Organizing 2024 International Conference on Quantum Fluids and Solids
会议:组织2024年量子流体和固体国际会议
- 批准号:
2318163 - 财政年份:2023
- 资助金额:
$ 5.56万 - 项目类别:
Standard Grant
Stereoscopic visualization study of turbulence and vortex-tangle dynamics in He II
He II 中湍流和涡旋缠结动力学的立体可视化研究
- 批准号:
2100790 - 财政年份:2021
- 资助金额:
$ 5.56万 - 项目类别:
Standard Grant
Adaptive High Order Low-Rank Tensor Methods for High-Dimensional Partial Differential Equations with Application to Kinetic Simulations
高维偏微分方程的自适应高阶低阶张量方法及其在动力学模拟中的应用
- 批准号:
2111383 - 财政年份:2021
- 资助金额:
$ 5.56万 - 项目类别:
Standard Grant
Flow Visualization Study of Quantum Hydrodynamics in Superfluid Helium-4
超流 Helium-4 中量子流体动力学的流动可视化研究
- 批准号:
1807291 - 财政年份:2018
- 资助金额:
$ 5.56万 - 项目类别:
Standard Grant
High Reynolds Number Turbulence Research in Cryogenic Helium
低温氦中的高雷诺数湍流研究
- 批准号:
1801780 - 财政年份:2018
- 资助金额:
$ 5.56万 - 项目类别:
Standard Grant
Development and Application of Efficient High-order Semi-Lagrangian Schemes
高效高阶半拉格朗日格式的开发与应用
- 批准号:
1620047 - 财政年份:2016
- 资助金额:
$ 5.56万 - 项目类别:
Standard Grant
Visualization study of vortex-line dynamics in a magnetically levitated helium-4 superfluid drop
磁悬浮氦 4 超流体液滴涡线动力学的可视化研究
- 批准号:
1507386 - 财政年份:2015
- 资助金额:
$ 5.56万 - 项目类别:
Continuing Grant
相似国自然基金
发展基于硫代环丙烯酮和基于多氟代芳基叠氮的高效生物正交反应及其应用
- 批准号:
- 批准年份:2021
- 资助金额:60 万元
- 项目类别:面上项目
噪声数据数值求导的高效稳定化方法及其应用研究
- 批准号:11761007
- 批准年份:2017
- 资助金额:32.0 万元
- 项目类别:地区科学基金项目
几类分数阶非线性发展方程的高效算法及其在流体力学中的应用
- 批准号:11771254
- 批准年份:2017
- 资助金额:48.0 万元
- 项目类别:面上项目
发展高效的第一性原理团簇结构预测算法并应用于硼团簇的结构预测
- 批准号:21273008
- 批准年份:2012
- 资助金额:78.0 万元
- 项目类别:面上项目
几种高效算法的发展及其在临界现象的应用
- 批准号:10975127
- 批准年份:2009
- 资助金额:36.0 万元
- 项目类别:面上项目
相似海外基金
Development of half-metallic materials with negative spin polarization and application to highly efficient spin-torque oscillators
负自旋极化半金属材料的开发及其在高效自旋扭矩振荡器中的应用
- 批准号:
23K03934 - 财政年份:2023
- 资助金额:
$ 5.56万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Accelerating digital cognitive screening for Alzheimer's disease in the Primary Care Setting
加速初级保健机构中阿尔茨海默病的数字认知筛查
- 批准号:
10664618 - 财政年份:2023
- 资助金额:
$ 5.56万 - 项目类别:
Expanding Access to Care for Marginalized Caregivers through Innovative Methods for Multicultural and Multilingual Adaptation of AI-Based Health Technologies
通过基于人工智能的医疗技术的多文化和多语言适应创新方法,扩大边缘化护理人员获得护理的机会
- 批准号:
10741177 - 财政年份:2023
- 资助金额:
$ 5.56万 - 项目类别:
Development and validation of efficient cognitive composite scores of digital tools for the detection of early pathophysiological changes in Alzheimers disease
开发和验证数字工具的有效认知综合评分,用于检测阿尔茨海默病的早期病理生理变化
- 批准号:
10642370 - 财政年份:2023
- 资助金额:
$ 5.56万 - 项目类别:
Accelerating digital cognitive screening for Alzheimer's disease in the Primary Care Setting
加速初级保健机构中阿尔茨海默病的数字认知筛查
- 批准号:
10664618 - 财政年份:2023
- 资助金额:
$ 5.56万 - 项目类别: