ERA-CAPS: Collaborative Research: Thylakoid ion flux-Linking photosynthetic efficiency with osmotic stress response
ERA-CAPS:合作研究:类囊体离子通量-将光合效率与渗透胁迫响应联系起来
基本信息
- 批准号:1847193
- 负责人:
- 金额:$ 36.08万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-01 至 2022-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Plant productivity is dependent on many environmental factors, whether plants grow wild or are carefully cultivated in a farmer's field. Efficient photosynthesis is the key to plant productivity, but soil salinity disrupts electrolytes, the so-called ion balance, in the leaf cells where photosynthesis occurs. Soil salinity is a growing problem globally and will affect worldwide food supplies if not effectively controlled. Deciphering how a plant responds to salinity and regulates its cellular ion fluxes is essential to understanding and potentially improving photosynthesis. This project identifies specific genes that control ion fluxes and responses to salinity in plants using a specialized imaging system and analysis tools to study their role in plant productivity. The international team will use their findings to develop a computational model to inform and improve breeding programs and to develop more highly productive plants that can tolerate soil salinity. The model will be tested in tomato with potential to have broad impact to assure global food security.Ion flux across the thylakoid membrane represents a promising target for improving plant photosynthesis, yet knowledge of key components is far from complete. This project brings together an international consortium with complementary expertise in chloroplast ion flux, spectroscopy, phenotyping, ionomics, biochemistry, bioenergetics, and computational modelling. By pursing multi-day phenotyping with dynamic growth lighting, the team has isolated new candidate thylakoid ion flux mutants. The researchers will study the compromised genes and their link to known thylakoid ion flux mediators by pursuing the following aims: (i) complete the thylakoid ion transport protein inventory; (ii) determine the role of thylakoid ion flux interactions in photosynthesis and hyperosmotic stress resistance; (iii) identify the process by which thylakoid ion flux impacts the hyperosmotic stress response; (iv) analyze thylakoid ion flux impacts on key agronomical traits in crop plants; and (v) generate a model for simulating increases to photosynthetic efficiency and salt stress resistance as a function of thylakoid ion flux. The Flux4LIVES project has several broader impacts. Photosynthesis is arguably the most important reaction on earth and a foundation for life. With clear evidence that growth conditions in the field have become more adverse recently, a detailed understanding on how abiotic stress impacts this reaction pathway is needed. Understanding the molecular mechanisms that protect photosynthesis and plant productivity will be key to improving these pathways and thus securing necessary levels of global food production. Since the data obtainedwill be open-access via the existing PhotosynQ database, the global scientific community can apply the knowledge to their own biological and ecological questions and thus further the effort to meet food demands across varying climates and conditions.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
植物生产力取决于许多环境因素,无论是野生植物还是在农民领域仔细种植。有效的光合作用是植物生产力的关键,但是在光合作用的叶细胞中,土壤盐度破坏了所谓的离子平衡。土壤盐度在全球范围内是一个日益增长的问题,如果不有效控制,将影响全球粮食供应。破译植物对盐度的反应并调节其细胞离子通量对于理解和可能改善光合作用至关重要。该项目确定了使用专门的成像系统和分析工具来研究其在植物生产力中的作用的特定基因,这些基因可以控制离子通量和对植物中盐度的反应。国际团队将利用他们的发现来开发一种计算模型,以告知和改善育种计划,并开发能够忍受土壤盐分的高产植物。该模型将在番茄中进行测试,并有可能产生广泛的影响以确保全球粮食安全。在类囊体膜中的ION通量是改善植物光合作用的有希望的目标,但是对关键成分的知识远非完整。该项目汇集了一个国际财团,具有叶绿体通量,光谱,表型,离子学,生物化学,生物能学和计算建模方面的互补专业知识。通过通过动态生长照明进行多天的表型,该团队隔离了新的候选类囊体离子通量突变体。研究人员将通过追求以下目的来研究受损的基因及其与已知的类囊体离子通量介质的联系:(i)完成类囊体离子转运蛋白库存; (ii)确定类囊体离子通量相互作用在光合作用和过度渗透应激性中的作用; (iii)确定类囊体离子通量影响过度渗透应激反应的过程; (iv)分析类囊体离子通量对作物植物中关键的农艺特征的影响; (v)生成一个模型,用于模拟光合作用效率和盐胁迫抗性,这是类囊体离子通量的函数。 Flux4lives项目具有更广泛的影响。光合作用可以说是地球上最重要的反应,也是生命的基础。有明确的证据表明该领域的生长状况最近变得越来越不利,因此对非生物应力如何影响该反应途径有详细的理解。了解保护光合作用和植物生产力的分子机制将是改善这些途径,从而确保必要水平的全球粮食生产水平的关键。由于获得的数据将通过现有的Photosynq数据库开放,因此全球科学界可以将知识应用于其自身的生物学和生态问题,从而进一步努力满足各种气候和条件的食物需求。这奖反映了NSF的法规使命,并认为通过基金会的知识优点和广泛的评论,可以通过评估来进行评估,并获得了支持。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Growth under Fluctuating Light Reveals Large Trait Variation in a Panel of Arabidopsis Accessions
- DOI:10.3390/plants9030316
- 发表时间:2020-03-01
- 期刊:
- 影响因子:4.5
- 作者:Kaiser, Elias;Walther, Dirk;Armbruster, Ute
- 通讯作者:Armbruster, Ute
Light Potentials of Photosynthetic Energy Storage in the Field: What limits the ability to use or dissipate rapidly increased light energy?
现场光合能量储存的光势:是什么限制了使用或消散快速增加的光能的能力?
- DOI:10.1101/2021.08.26.457798
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Kanazawa, Atsuko;Chattopadhyay, Abhijnan;Kuhlgert, Sebastian;Tuitupou, Hainite;Maiti, Tapabrata;Kramer, David M.
- 通讯作者:Kramer, David M.
Light acclimation interacts with thylakoid ion transport to govern the dynamics of photosynthesis in Arabidopsis
光驯化与类囊体离子运输相互作用,控制拟南芥光合作用的动态
- DOI:10.1111/nph.18534
- 发表时间:2023
- 期刊:
- 影响因子:9.4
- 作者:von Bismarck, Thekla;Korkmaz, Kübra;Ruß, Jeremy;Skurk, Kira;Kaiser, Elias;Correa Galvis, Viviana;Cruz, Jeffrey A.;Strand, Deserah D.;Köhl, Karin;Eirich, Jürgen
- 通讯作者:Eirich, Jürgen
Impact of ion fluxes across thylakoid membranes on photosynthetic electron transport and photoprotection
- DOI:10.1038/s41477-021-00947-5
- 发表时间:2021-06-17
- 期刊:
- 影响因子:18
- 作者:Li, Meng;Svoboda, Vaclav;Kirchhoff, Helmut
- 通讯作者:Kirchhoff, Helmut
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Kramer其他文献
DodOrg - A Self-adaptive Organic Many-core Architecture
DodOrg - 自适应有机多核架构
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
T. Ebi;David Kramer;C. Schuck;Alexander von Renteln;J. Becker;U. Brinkschulte;J. Henkel;Wolfgang Karl - 通讯作者:
Wolfgang Karl
Realizing a Proactive, Self-Optimizing System Behavior within Adaptive, Heterogeneous Many-Core Architectures
在自适应、异构众核架构中实现主动、自我优化的系统行为
- DOI:
10.1109/saso.2012.26 - 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
David Kramer;Wolfgang Karl - 通讯作者:
Wolfgang Karl
Right-to-left Intrapulmonary Shunting Through Vascular Dilatations Contributes to Severe Hypoxemia in Patients With End-stage Pulmonary Fibrosis: Implications for Lung Transplantatio
- DOI:
10.1378/chest.124.4_meetingabstracts.201s - 发表时间:
2003-01-01 - 期刊:
- 影响因子:
- 作者:
Cesar A. Keller;Francisco Alvarez;Javier Aduen;David Kramer;Lawrence McBride;Octavio Pajaro; Lung Transplant Group - 通讯作者:
Lung Transplant Group
Regional Cerebral Blood Flow and CO2 Reactivity in Fulminant Hepatic Failure
暴发性肝衰竭中的局部脑血流量和 CO2 反应性
- DOI:
- 发表时间:
1995 - 期刊:
- 影响因子:6.3
- 作者:
S. Durham;H. Yonas;S. Aggarwal;J. Darby;David Kramer - 通讯作者:
David Kramer
David Kramer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David Kramer', 18)}}的其他基金
PAPM EAGER: A Plant Observatory for remote sensing of biochemical reactions in vivo
PAPM EAGER:遥感体内生化反应的植物观测站
- 批准号:
1758091 - 财政年份:2017
- 资助金额:
$ 36.08万 - 项目类别:
Standard Grant
PAPM EAGER: A Plant Observatory for remote sensing of biochemical reactions in vivo
PAPM EAGER:遥感体内生化反应的植物观测站
- 批准号:
1650196 - 财政年份:2016
- 资助金额:
$ 36.08万 - 项目类别:
Standard Grant
Collaborative Research: Plug and Play Photosynthesis for RuBisCO Independent Fuels
合作研究:RuBisCO 独立燃料的即插即用光合作用
- 批准号:
1359594 - 财政年份:2014
- 资助金额:
$ 36.08万 - 项目类别:
Standard Grant
Collaborative Research: Plug and Play Photosynthesis for RuBisCO Independent Fuels
合作研究:RuBisCO 独立燃料的即插即用光合作用
- 批准号:
1104907 - 财政年份:2011
- 资助金额:
$ 36.08万 - 项目类别:
Standard Grant
Critical Roles of Transthylakoid Delta pH in the Energetics and Regulation of Photosynthesis
跨类囊体 Delta pH 在光合作用的能量学和调节中的关键作用
- 批准号:
9817980 - 财政年份:1999
- 资助金额:
$ 36.08万 - 项目类别:
Standard Grant
相似国自然基金
“帽子”政策促进还是抑制了海外学术人才回流? ——基于对580万份简历大数据的人工智能(准)因果推断
- 批准号:72374023
- 批准年份:2023
- 资助金额:41 万元
- 项目类别:面上项目
工程化T7 RNA聚合酶以实现高效Cap-2帽子mRNA的合成
- 批准号:32371352
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
Ap4A帽子RNA及其去帽酶NUDT2在天然免疫应答中的功能研究
- 批准号:32301079
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
CAPS1通过调控EGFR内吞再循环影响肝癌生长的机制
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
葡萄座腔菌病毒BdCV1不依赖帽子翻译对寄主致病力的调控机制
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
ERA-CAPS: Collaborative Research: Thylakoid ion flux-Linking photosynthetic efficiency with osmotic stress response
ERA-CAPS:合作研究:类囊体离子通量-将光合效率与渗透胁迫响应联系起来
- 批准号:
1847382 - 财政年份:2018
- 资助金额:
$ 36.08万 - 项目类别:
Standard Grant
ERA-CAPS: Collaborative Research: Role of Extracellular Vesicles in Plant-Microbe Interactions
ERA-CAPS:合作研究:细胞外囊泡在植物-微生物相互作用中的作用
- 批准号:
1842698 - 财政年份:2018
- 资助金额:
$ 36.08万 - 项目类别:
Standard Grant
ERA-CAPS: Collaborative Research: Role of Extracellular Vesicles in Plant-Microbe Interactions
ERA-CAPS:合作研究:细胞外囊泡在植物-微生物相互作用中的作用
- 批准号:
1842685 - 财政年份:2018
- 资助金额:
$ 36.08万 - 项目类别:
Standard Grant
Joint NSF/ERA-CAPS: Collaborative Research: BEAN-ADAPT - Genetic Architecture of Rapid Evolutionary Adaptation to Changing Environments in Domesticated Phaseolus Bean Species
NSF/ERA-CAPS 联合:合作研究:BEAN-ADAPT - 驯化菜豆物种快速进化适应不断变化的环境的遗传结构
- 批准号:
1539838 - 财政年份:2015
- 资助金额:
$ 36.08万 - 项目类别:
Standard Grant
Joint NSF/ERA-CAPS: Collaborative Research: BEAN-ADAPT - Genetic Architecture of Rapid Evolutionary Adaptation to Changing Environments in Domesticated Phaseolus Bean Species
NSF/ERA-CAPS 联合:合作研究:BEAN-ADAPT - 驯化菜豆物种快速进化适应不断变化的环境的遗传结构
- 批准号:
1539848 - 财政年份:2015
- 资助金额:
$ 36.08万 - 项目类别:
Standard Grant