CAREER: Uncertainty-Aware and Data-Driven Methods for Electronic and Photonic Design Automation
职业:电子和光子设计自动化的不确定性感知和数据驱动方法
基本信息
- 批准号:1846476
- 负责人:
- 金额:$ 51.03万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-04-01 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Designing complex engineering systems such as self-driving cars, electronic and photonic integrated circuits, requires design automation software to complete many challenging tasks that are impossible or too time-consuming if done manually. In practice, almost all engineering designs are subject to such unavoidable uncertainties as noise, fabrication process variations and insufficient knowledge about external environments. These uncertainties often cause performance degradations, system failures and sometimes fatal accidents. However, existing design automation software requires massive data samples from time-consuming computer simulations or non-trivial measurement when uncertainties are involved. This project uses electronic and photonic integrated circuits as driving examples, and will develop novel design automation algorithms to improve the performance and reliability under various uncertainties. The education components of this project include creating two graduate courses of uncertainty and data analysis, training future workforce through undergraduate and graduate research. The outreach education and training through the awardee institution and through academic conferences will enable technology and knowledge transfer to a broad community. Although this project targets on applications in electronics and photonics, the developed algorithms and theory will be applicable to many other domains such as autonomous driving, renewable energy systems, and medical imaging. Since uncertainty-aware photonic design automation is still at its early stage, this project will enable a new field of important research. The resulting algorithms and tools will support the foreseeable large-scale photonic integration which will boost the performance of future computing and communication systems. The technical goal of this project is to develop novel uncertainty-aware electronic and photonic design automation algorithms that require only a small data set and a very low computational cost in the design flow. This project will span three research topics: uncertainty-aware simulation, optimization and data-driven variation modeling. Firstly, novel algorithms will be developed to address several long-standing challenges in the forward uncertainty quantification of electronic and photonic circuits, such as the coupled impact of fundamentally different types of uncertainties and long-term probabilistic simulation errors. Secondly, leveraging the developed forward uncertainty simulator, this project will further develop ultra-fast optimization tools to improve the yield of electronic and photonic circuits. The main focus will be investigating large-scale "non-sampling" stochastic optimization algorithms. The developed algorithms will enable rigorous yield optimization with "small" simulation data sets and thus significantly reduce the software runtime on a computer. Finally, rigorous statistical estimation algorithms will be developed to calibrate critical device model parameters and to extract statistical variability distributions based on limited and noisy indirect circuit-level measurement data. The designed algorithms and prototyping software will be validated by practical design cases.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
设计复杂的工程系统,例如自动驾驶汽车,电子和光子集成电路,需要设计自动化软件来完成许多不可能或过时的任务,如果手动完成。实际上,几乎所有工程设计都受到不可避免的不确定性,例如噪声,制造过程变化以及对外部环境的知识不足。这些不确定性通常会导致性能降解,系统失败以及有时是致命的事故。但是,现有的设计自动化软件需要涉及不确定性时耗时的计算机模拟或非平凡测量来大规模的数据示例。该项目使用电子和光子集成电路作为驾驶示例,并将开发新颖的设计自动化算法,以提高各种不确定性下的性能和可靠性。该项目的教育组成部分包括创建两个不确定性和数据分析的研究生课程,通过本科和研究生研究培训未来的劳动力。通过获奖者机构和学术会议的推广教育和培训将使技术和知识转移到广泛的社区。尽管该项目针对电子和光子学的应用,但开发的算法和理论将适用于许多其他领域,例如自动驾驶,可再生能源系统和医学成像。由于不确定性感知的光子设计自动化仍处于早期阶段,因此该项目将为重要的重要研究提供新的领域。由此产生的算法和工具将支持可预见的大规模光子集成,这将提高未来计算和通信系统的性能。 该项目的技术目标是开发新颖的不确定性感知的电子和光子设计自动化算法,该算法仅需要一个小的数据集和设计流中的计算成本非常低。 该项目将涵盖三个研究主题:不确定性感知模拟,优化和数据驱动的变化建模。首先,将开发新的算法,以应对电子和光子电路的正向不确定性量化的几个长期挑战,例如根本不同类型的不确定性和长期概率模拟误差的耦合影响。其次,该项目利用开发的正向不确定性模拟器,将进一步开发超快速优化工具,以提高电子和光子电路的产量。主要重点是研究大规模的“非采样”随机优化算法。开发的算法将通过“小”仿真数据集实现严格的收益率优化,从而大大降低了计算机上的软件运行时。最后,将开发严格的统计估计算法来校准关键设备模型参数,并根据有限和嘈杂的间接电路级测量数据提取统计变异性分布。设计的算法和原型软件将通过实用设计案例来验证。该奖项反映了NSF的法定任务,并且使用基金会的知识分子优点和更广泛的影响评估标准,被认为值得通过评估来获得支持。
项目成果
期刊论文数量(13)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Distributionally Robust Circuit Design Optimization under Variation Shifts
- DOI:10.1109/iccad57390.2023.10323948
- 发表时间:2023-08
- 期刊:
- 影响因子:0
- 作者:Yifan Pan;Zichang He;Nanlin Guo;Zheng Zhang
- 通讯作者:Yifan Pan;Zichang He;Nanlin Guo;Zheng Zhang
Recent Advancements of Uncertainty Quantification with Non-Gaussian Correlated Process Variations: Invited Special Session Paper
非高斯相关过程变化的不确定性量化的最新进展:特邀特别会议论文
- DOI:10.1109/nemo.2019.8853732
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Cui, Chunfeng;Zhang, Zheng
- 通讯作者:Zhang, Zheng
Performance Evaluation and Acceleration of the QTensor Quantum Circuit Simulator on GPUs
- DOI:10.1109/qcs54837.2021.00007
- 发表时间:2021-11
- 期刊:
- 影响因子:0
- 作者:Danylo Lykov;Angela Chen;Huaxuan Chen;Kristopher Keipert;Zheng Zhang;Tom Gibbs;Y. Alexeev
- 通讯作者:Danylo Lykov;Angela Chen;Huaxuan Chen;Kristopher Keipert;Zheng Zhang;Tom Gibbs;Y. Alexeev
Prediction of Multidimensional Spatial Variation Data via Bayesian Tensor Completion
- DOI:10.1109/tcad.2019.2891987
- 发表时间:2019-01
- 期刊:
- 影响因子:2.9
- 作者:Jiali Luan;Zheng Zhang
- 通讯作者:Jiali Luan;Zheng Zhang
Progress of Tensor-Based High-Dimensional Uncertainty Quantification of Process Variations
基于张量的过程变化高维不确定性量化研究进展
- DOI:10.1109/aces53325.2021.00020
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:He, Zichang;Zhang, Zheng
- 通讯作者:Zhang, Zheng
共 12 条
- 1
- 2
- 3
Zheng Zhang其他文献
Modification chimique de la cellulose nanofibrillée par les alcoxysilanes : application à l'élaboration de composites et mousses
- DOI:
- 发表时间:2013-112013-11
- 期刊:
- 影响因子:0
- 作者:Zheng ZhangZheng Zhang
- 通讯作者:Zheng ZhangZheng Zhang
Complete genome analysis of a virulent Vibrio scophthalmi strain VSc190401 isolated from diseased marine sh half-smooth tongue sole,
- DOI:
- 发表时间:20202020
- 期刊:
- 影响因子:0
- 作者:Zheng ZhangZheng Zhang
- 通讯作者:Zheng ZhangZheng Zhang
基于LabView阻抗分析仪组成及实验分析
- DOI:
- 发表时间:20132013
- 期刊:
- 影响因子:0
- 作者:Zheng Zhang;Yihua Liao;Tiemin Zhang;Junguan OuZheng Zhang;Yihua Liao;Tiemin Zhang;Junguan Ou
- 通讯作者:Junguan OuJunguan Ou
Cavitation Damage Prediction of Stainless Steels Using an Artificial Neural Network Approach
使用人工神经网络方法预测不锈钢的气蚀损伤
- DOI:10.3390/met905050610.3390/met9050506
- 发表时间:20192019
- 期刊:
- 影响因子:2.9
- 作者:Guiyan Gao;Zheng Zhang;Cheng Cai;Jianglong Zhang;B. NieGuiyan Gao;Zheng Zhang;Cheng Cai;Jianglong Zhang;B. Nie
- 通讯作者:B. NieB. Nie
Irisin-pretreated BMMSCs secrete exosomes to alleviate cardiomyocytes pyroptosis and oxidative stress to hypoxia/reoxygenation injury.
鸢尾素预处理的 BMMSC 分泌外泌体,以减轻心肌细胞焦亡和缺氧/复氧损伤的氧化应激。
- DOI:10.2174/1574888x1866622111711182910.2174/1574888x18666221117111829
- 发表时间:20222022
- 期刊:
- 影响因子:2.7
- 作者:Jingyu Deng;Taoyuan Zhang;Man Li;Guang;Hanwen Wei;Zheng Zhang;TaoJingyu Deng;Taoyuan Zhang;Man Li;Guang;Hanwen Wei;Zheng Zhang;Tao
- 通讯作者:TaoTao
共 708 条
- 1
- 2
- 3
- 4
- 5
- 6
- 142
Zheng Zhang的其他基金
SHF: Small: Tackling Mapping and Scheduling Problems for Quantum Program Compilation
SHF:小型:解决量子程序编译的映射和调度问题
- 批准号:21298722129872
- 财政年份:2021
- 资助金额:$ 51.03万$ 51.03万
- 项目类别:Standard GrantStandard Grant
Collaborative Research: SHF: Medium: Analog EDA-Inspired Methods for Efficient and Robust Neural Network Design
合作研究:SHF:媒介:用于高效、鲁棒神经网络设计的模拟 EDA 启发方法
- 批准号:21073212107321
- 财政年份:2021
- 资助金额:$ 51.03万$ 51.03万
- 项目类别:Continuing GrantContinuing Grant
SHF:Small: Tensor-Based Algorithm and Hardware Co-Optimization for Neural Network Architecture
SHF:Small:基于张量的神经网络架构算法和硬件协同优化
- 批准号:18170371817037
- 财政年份:2018
- 资助金额:$ 51.03万$ 51.03万
- 项目类别:Standard GrantStandard Grant
XPS: EXPL: Cache Management for Data Parallel Architecture
XPS:EXPL:数据并行架构的缓存管理
- 批准号:16284011628401
- 财政年份:2016
- 资助金额:$ 51.03万$ 51.03万
- 项目类别:Standard GrantStandard Grant
SHF: Small: Optimizing Compiler and Runtime for Concurrency-Oriented Execution Model
SHF:小型:优化面向并发的执行模型的编译器和运行时
- 批准号:14215051421505
- 财政年份:2014
- 资助金额:$ 51.03万$ 51.03万
- 项目类别:Standard GrantStandard Grant
相似国自然基金
不确定性视角下碳交易与环境税的交互效果评估及协同优化设计
- 批准号:72304063
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
多目标随机优化在源荷不确定新能源热电耦合微电网中的典型问题研究
- 批准号:62376239
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
不确定环境下考虑燃油和LNG动力混合船队的海运服务网络设计问题研究
- 批准号:72371089
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
知识与数据混合驱动的含缺陷点阵结构不确定性分析与优化方法研究
- 批准号:12302149
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
不确定非线性系统凸优化模糊自适应命令滤波反步控制及应用
- 批准号:62303255
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: Uncertainty-aware sensing and management for IoT
职业:物联网的不确定性感知传感和管理
- 批准号:23400492340049
- 财政年份:2024
- 资助金额:$ 51.03万$ 51.03万
- 项目类别:Continuing GrantContinuing Grant
Cross-Layer Uncertainty-Aware Reinforcement Learning for Safe Autonomous Driving
用于安全自动驾驶的跨层不确定性感知强化学习
- 批准号:EP/Y002644/1EP/Y002644/1
- 财政年份:2024
- 资助金额:$ 51.03万$ 51.03万
- 项目类别:Research GrantResearch Grant
Climate Tipping Points: Uncertainty-aware quantification of Earth system tipping potential from observations and models and assessment of associated climatic, ecological, and socioeconomic impacts
气候临界点:通过观测和模型以及对相关气候、生态和社会经济影响的评估,对地球系统潜在的不确定性进行量化
- 批准号:1009079510090795
- 财政年份:2024
- 资助金额:$ 51.03万$ 51.03万
- 项目类别:EU-FundedEU-Funded
CCSS: Uncertainty-Aware Computational Imaging in the Wild: a Bayesian Deep Learning Approach in the Latent Space
CCSS:野外不确定性感知计算成像:潜在空间中的贝叶斯深度学习方法
- 批准号:23187582318758
- 财政年份:2023
- 资助金额:$ 51.03万$ 51.03万
- 项目类别:Standard GrantStandard Grant
Uncertainty aware virtual treatment planning for peripheral pulmonary artery stenosis
外周肺动脉狭窄的不确定性虚拟治疗计划
- 批准号:1073400810734008
- 财政年份:2023
- 资助金额:$ 51.03万$ 51.03万
- 项目类别: