CAREER: Scalable and Robust Dynamic Matching Market Design

职业:可扩展且稳健的动态匹配市场设计

基本信息

  • 批准号:
    1846237
  • 负责人:
  • 金额:
    $ 55万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-02-01 至 2024-01-31
  • 项目状态:
    已结题

项目摘要

Markets are systems that empower interested parties -- humans, firms, governments, or autonomous agents -- to exchange goods, services, and information. Due to logistical or societal constraints, many markets, e.g., school choice, rideshare, medical residency, advertising, cadaveric organ allocation, online labor, public housing, refugee placement, as well as barter markets such as kidney exchange, cannot rely solely on prices to match supply and demand. This project will develop connections between artificial intelligence (AI) and matching market theory and practice. Specifically, it will create practical methods for the design and analysis of dynamic matching markets operating under various forms of uncertainty, with complex goals, and under objectives that take into account stakeholders' value judgments in a principled way. This research will improve existing systems as well as enable new markets. It will directly address problems in real-world matching systems such as kidney exchange and will lead to improvements in fairness, economic efficiency, and ethical alignment of objectives in fielded kidney allocation systems and other markets. This project will also lay the groundwork for a redesign of the computer science faculty and post-doc job matching market; and it will begin developing principled systems to promote diversity in university admissions, as well as quantitative and technical hiring. Open source software solutions developed as a byproduct of this research will be made available to the public, and results will be communicated with educators.This project will substantially increase the breadth of matching market design, traditionally addressed via microeconomic theory, by developing scalable AI-based methods for designing and analyzing these markets. In turn, matching markets will serve as impetus and inspiration for the development of principled and scalable general optimization-based algorithms for decision making under uncertainty, as well as general AI-based methods for alignment of systems with elicited stakeholder value judgments. The research will make progress in the following three directions:1) Principled approaches to managing short-term uncertainty. Often, decisions must be made before all information about the environment is revealed. This project will take an AI-based approach to decision making under uncertainty; specifically, it will design and create principled methods to learn (at some cost) about the environment that tie into novel methods for computing robust matching policies.2) Learning to balance fairness and efficiency through dynamic matching. Many matching markets are dynamic: participants arrive and depart over time, and relationships between them evolve in predictable ways. Via reinforcement learning and approximate dynamic programming, this project will develop principled and practical ways to learn matching policies that provide both economic efficiency gains alongside fairness and/or diversity-promoting guarantees.3) Alignment with human value judgments. AI-based matching methods require an objective to optimize. Defining that objective involves a feedback loop between human stakeholders---each with their own value judgments---and automated systems. This research will meld techniques for aggregating value judgments of human stakeholders into automated matching and resource allocation systems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
市场是授权感兴趣的各方(人类,公司,政府或自治代理)来交换商品,服务和信息的系统。 由于后勤或社会限制,许多市场,例如学校的选择,乘车,医疗居住,广告,尸体器官分配,在线劳动力,公共住房,难民安置,以及肾脏交易所等易货市场,不能完全依靠价格来匹配供应和需求。 该项目将在人工智能(AI)与匹配的市场理论与实践之间建立联系。具体而言,它将创建实用方法,以设计和分析在各种形式的不确定性,复杂目标以及目标下,以原则性的方式考虑利益相关者的价值判断的目标。 这项研究将改善现有系统,并启用新市场。 它将直接解决现实世界中的匹配系统(例如肾脏交换)的问题,并将导致在现场肾脏分配系统和其他市场中目标的公平,经济效率和道德一致性的提高。 该项目还将为重新设计计算机科学教师和DOC后工作匹配市场的基础奠定基础;它将开始开发有原则的系统,以促进大学录取的多样性以及定量和技术招聘。 开发软件解决方案将作为本研究的副产品开发,将向公众提供,并将与教育工作者传达结果。该项目将通过开发基于可扩展的AI基于AI的方法来设计和分析这些市场,从而大大提高匹配市场设计的广度,传统上通过微观经济理论解决。 反过来,匹配的市场将成为开发不确定性下的决策的原则性和可扩展性一般优化算法的动力和灵感,以及基于AI的一般方法,用于对具有引起利益相关者价值判断的系统的对准。 该研究将在以下三个方向上取得进展:1)管理短期不确定性的原则方法。 通常,必须在揭示有关环境的所有信息之前做出决定。 该项目将采用基于AI的基于不确定性的决策方法;具体而言,它将设计并创建有原则的方法,以学习(以某种成本)将环境学习到计算可靠匹配策略的新方法的环境。2)学习通过动态匹配来平衡公平和效率。 许多匹配的市场都是动态的:参与者随着时间的推移而到达并离开,它们之间的关系以可预测的方式发展。 通过强化学习和近似动态编程,该项目将开发有原则和实用的方法来学习匹配政策,从而提供经济效率提高以及公平性和/或促进多样性的保证。3)与人类价值判断保持一致。基于AI的匹配方法需要一个目标才能优化。 定义该目标涉及人类利益相关者之间的反馈循环 - 每个人都有自己的价值判断----自动化系统。 这项研究将融合到将人类利益相关者汇总到自动匹配和资源分配系统中的价值判断的技术。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子和更广泛影响的评估评估的评估来支持的。

项目成果

期刊论文数量(39)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Just How Toxic is Data Poisoning? A Unified Benchmark for Backdoor and Data Poisoning Attacks
  • DOI:
  • 发表时间:
    2020-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Avi Schwarzschild;Micah Goldblum;Arjun Gupta;John P. Dickerson;T. Goldstein
  • 通讯作者:
    Avi Schwarzschild;Micah Goldblum;Arjun Gupta;John P. Dickerson;T. Goldstein
Fair Clustering Under a Bounded Cost
  • DOI:
  • 发表时间:
    2021-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Seyed-Alireza Esmaeili;Brian Brubach;A. Srinivasan;John P. Dickerson
  • 通讯作者:
    Seyed-Alireza Esmaeili;Brian Brubach;A. Srinivasan;John P. Dickerson
Planning to Fairly Allocate: Probabilistic Fairness in the Restless Bandit Setting
规划公平分配:不安定强盗环境中的概率公平
Adapting a kidney exchange algorithm to align with human values
  • DOI:
    10.1016/j.artint.2020.103261
  • 发表时间:
    2020-06-01
  • 期刊:
  • 影响因子:
    14.4
  • 作者:
    Freedman, Rachel;Borg, Jana Schaich;Conitzer, Vincent
  • 通讯作者:
    Conitzer, Vincent
Clearing Kidney Exchanges via Graph Neural Network Guided Tree Search (Student Abstract)
通过图神经网络引导树搜索清除肾脏交换(学生摘要)
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

John Dickerson其他文献

Percutaneous retrogasserian glycerol rhizolysis for treatment of chronic intractable cluster headaches: long-term results.
经皮后甘油根溶解术治疗慢性顽固性丛集性头痛:长期结果。
  • DOI:
  • 发表时间:
    2000
  • 期刊:
  • 影响因子:
    4.8
  • 作者:
    Daniel R. Pieper;John Dickerson;Samuel J. Hassenbusch
  • 通讯作者:
    Samuel J. Hassenbusch
Spectral characteristics of ageing postural control
衰老姿势控制的光谱特征
  • DOI:
  • 发表时间:
    1995
  • 期刊:
  • 影响因子:
    0
  • 作者:
    B. McClenaghan;H. Williams;John Dickerson;M. Dowda;L. Thombs;P. Eleazer
  • 通讯作者:
    P. Eleazer
Fair Clustering: Critique, Caveats, and Future Directions
公平集群:批评、警告和未来方向
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    John Dickerson;Seyed A. Esmaeili;Jamie Morgenstern;Claire Jie Zhang
  • 通讯作者:
    Claire Jie Zhang
Sub-Types of Deep Dyslexia: A Case Study of Central Deep Dyslexia
深度阅读障碍的亚型:中枢性深度阅读障碍的案例研究
  • DOI:
    10.1080/13554790490960477
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0.8
  • 作者:
    John Dickerson;H. Johnson
  • 通讯作者:
    H. Johnson
Achieving Downstream Fairness with Geometric Repair
通过几何修复实现下游公平
  • DOI:
    10.48550/arxiv.2203.07490
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kweku Kwegyir;Jessica Dai;John Dickerson;Keegan E. Hines
  • 通讯作者:
    Keegan E. Hines

John Dickerson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('John Dickerson', 18)}}的其他基金

SBIR Phase I: Advertising Sales and Traffic Optimization: Difficult Customer-Requested Optimization Constraints and Scalability on Real Data
SBIR 第一阶段:广告销售和流量优化:客户要求的困难的优化约束和真实数据的可扩展性
  • 批准号:
    1345567
  • 财政年份:
    2014
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
Stability of Parametrically Excited Partial Differential Equations
参数激励偏微分方程的稳定性
  • 批准号:
    7522859
  • 财政年份:
    1975
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant

相似国自然基金

面向智能网卡的可扩展FPGA包分类技术研究
  • 批准号:
    62372123
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
面向高并发软件的可扩展建模与分析技术研究
  • 批准号:
    62302375
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于随机化的高效可扩展深度学习算法研究
  • 批准号:
    62376131
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
包含时空维度的可扩展光MIMO解调芯片与均衡器
  • 批准号:
    62335019
  • 批准年份:
    2023
  • 资助金额:
    225.00 万元
  • 项目类别:
    重点项目
基于可扩展去蜂窝架构的大规模低时延高可靠通信研究
  • 批准号:
    62371039
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目

相似海外基金

CAREER: Scalable and Robust Uncertainty Quantification using Subsampling Markov Chain Monte Carlo Algorithms
职业:使用子采样马尔可夫链蒙特卡罗算法进行可扩展且稳健的不确定性量化
  • 批准号:
    2340586
  • 财政年份:
    2024
  • 资助金额:
    $ 55万
  • 项目类别:
    Continuing Grant
CAREER: Towards Scalable and Robust Inference of Phylogenetic Networks
职业:走向可扩展和稳健的系统发育网络推理
  • 批准号:
    2144367
  • 财政年份:
    2022
  • 资助金额:
    $ 55万
  • 项目类别:
    Continuing Grant
CAREER: Robust and scalable genome-wide phylogenetics
职业:稳健且可扩展的全基因组系统发育学
  • 批准号:
    1845967
  • 财政年份:
    2019
  • 资助金额:
    $ 55万
  • 项目类别:
    Continuing Grant
CAREER: Leveraging Combinatorial Structures for Robust and Scalable Learning
职业:利用组合结构实现稳健且可扩展的学习
  • 批准号:
    1845032
  • 财政年份:
    2019
  • 资助金额:
    $ 55万
  • 项目类别:
    Continuing Grant
CAREER: Robust, scalable, reliable machine learning
职业:稳健、可扩展、可靠的机器学习
  • 批准号:
    1750286
  • 财政年份:
    2018
  • 资助金额:
    $ 55万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了