CAREER: Quantum Systems with Deterministic Disorder
职业:具有确定性无序的量子系统
基本信息
- 批准号:1846114
- 负责人:
- 金额:$ 40万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-07-01 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Disordered quantum systems are fundamental objects in modern mathematical physics, since, due to presence of heat, any real-life system has some level of noise in it. Systems with noise/disorder are often studied by probabilistic methods and assume that the noise is random. The main scope of the project is to study systems where the noise has additional structure and has deterministic (non-random) nature. In physics, strong random disorder often implies that the system becomes an insulator and prevents electrons in it from moving freely. Would it also be true for some systems with non-random disorder? If yes, which properties make non-random systems behave like random and can it be measured? Are there any additional effects if the disorder is not strong? The main goal of the project is to address these questions on many levels, which will include work with undergraduate and graduate students, development of graduate courses on dynamics and spectral theory, and developing a course for high school students that would illustrate connections between basic linear algebra and physics, providing them skills and motivation for possible further education in STEM.This project incorporates teaching and research activities on the analysis of a class of models of mathematical quantum physics, including developing abstract techniques of operator theory and establishing rigorous results on more concrete systems. All proposed models involve disorder, however, unlike usual probabilistic view on disordered systems, the main goal will be studying the disorder in a completely deterministic setting, or with a very small number of random/ergodic parameters. An example of such system would be a Schrodinger operator with dynamically-defined potential, where the underlying dynamical system has small dimension and low degree of mixing (for example, irrational rotation). Typically, quantum systems with large random disorder tend to prevent electrons from moving freely (Anderson localization). To answer even basic questions about electron transport in deterministic disordered systems, one must replace usual probabilistic methods by methods of number theory, ergodic theory, semi-algebraic geometry, and other deep areas. The main directions of the project involve analysis of localization/delocalization for systems of interacting quasiperiodic particles and the effect of interaction, perturbative methods for single-particle operators with rough potentials, perturbation properties for spectral bands of periodic operators, and abstract methods of operator theory applied to almost commuting operators and matrices, with applications to quantum systems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
无序量子系统是现代数学物理学中的基本对象,因为由于存在热量,任何现实生活中的系统都具有一定程度的噪声。经常通过概率方法研究具有噪声/混乱的系统,并假设噪声是随机的。该项目的主要范围是研究噪声具有额外结构并具有确定性(非随机)性质的系统。在物理学中,强大的随机疾病通常意味着系统成为绝缘体,并防止其中的电子自由移动。对于某些非随机疾病的系统也是如此吗?如果是,哪些属性会使非随机系统的行为像随机,并且可以测量吗?如果该疾病不强,是否会有其他影响吗?该项目的主要目标是在许多层面上解决这些问题,其中包括与本科生和研究生的合作,开发研究生课程,有关动态和光谱理论的研究生课程,并为高中生开发一门课程,以说明基本线性代数和物理学之间的联系,从操作者理论并在更具体的系统上建立严格的结果。但是,所有提出的模型都涉及混乱,但是,与无序系统上的常见概率观点不同,主要目标是在完全确定性的环境中研究该疾病,或者使用少量的随机/嗜酸群参数。这样的系统的一个例子是具有动态定义电势的Schrodinger操作员,其中基础动力学系统具有较小的尺寸和较低的混合度(例如,非理性旋转)。通常,具有较大随机疾病的量子系统倾向于防止电子自由移动(安德森本地化)。为了回答有关确定性混乱系统中电子传输的基本问题,必须通过数字理论,千古理论,半代数几何形状和其他深层区域替代通常的概率方法。该项目的主要方向涉及分析相互作用的准膜颗粒系统的定位/定位化以及相互作用的效果,具有粗糙电位的单粒子操作员的扰动方法,对周期性操作员的光谱带的扰动特性,对经期间操作员的光谱带的扰动特性,以及对操作员的摘要和统计型统计型和统计的统计范围,并适用于运营商的应用程序,并适用于统计的统计信息,并适用于通勤的系统,并适用于系统的应用。使用基金会的知识分子优点和更广泛的审查标准,通过评估被认为值得支持。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Convergence of perturbation series for unbounded monotone quasiperiodic operators
- DOI:10.1016/j.aim.2022.108647
- 发表时间:2020-05
- 期刊:
- 影响因子:1.7
- 作者:I. Kachkovskiy;L. Parnovski;R. Shterenberg
- 通讯作者:I. Kachkovskiy;L. Parnovski;R. Shterenberg
Perturbative diagonalization for Maryland-type quasiperiodic operators with flat pieces
- DOI:10.1063/5.0042994
- 发表时间:2021-02
- 期刊:
- 影响因子:1.3
- 作者:I. Kachkovskiy;Stanislav Krymski;L. Parnovski;R. Shterenberg
- 通讯作者:I. Kachkovskiy;Stanislav Krymski;L. Parnovski;R. Shterenberg
Absolute Continuity of the Spectrum of the Periodic Schrödinger Operator in a Cylinder with Robin Boundary Condition
具有Robin边界条件的圆柱体中周期性薛定谔算子谱的绝对连续性
- DOI:10.1134/s0016266320020045
- 发表时间:2020
- 期刊:
- 影响因子:0.4
- 作者:Kachkovskiy, I. V.;Filonov, N. D.
- 通讯作者:Filonov, N. D.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ilya Kachkovskiy其他文献
Ilya Kachkovskiy的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ilya Kachkovskiy', 18)}}的其他基金
FRG: Collaborative Research: Non-Perturbative Analysis for Multi-Dimensional Quasiperiodic Systems
FRG:协作研究:多维准周期系统的非微扰分析
- 批准号:
2052519 - 财政年份:2021
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
The 2020 & 2021 Great Lakes Mathematical Physics Meetings
2020年
- 批准号:
1955304 - 财政年份:2020
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Spectral Theory of Periodic and Quasiperiodic Quantum Systems
周期和准周期量子系统的谱论
- 批准号:
1758326 - 财政年份:2017
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Spectral Theory of Periodic and Quasiperiodic Quantum Systems
周期和准周期量子系统的谱论
- 批准号:
1600422 - 财政年份:2016
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
相似国自然基金
基于量子Cramer-Rao极限的非厄米及开放系统量子感知研究
- 批准号:12305031
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
彭罗斯准晶中强关联量子多体系统的蒙特卡罗研究
- 批准号:12304171
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
高速量子密钥分发系统实际安全性分析研究
- 批准号:62371459
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于磁振子的量子比特耦合与传导片上系统
- 批准号:92365113
- 批准年份:2023
- 资助金额:69 万元
- 项目类别:重大研究计划
原子-微纳波导系统中的非厄米非线性与量子光学效应研究
- 批准号:12374303
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
相似海外基金
Towards a Quantum-Mechanical Understanding of Redox Chemistry in Proteins
对蛋白质氧化还原化学的量子力学理解
- 批准号:
10606459 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
CAREER: New Frontiers in Continuous-time Open Quantum Systems
职业:连续时间开放量子系统的新领域
- 批准号:
2238766 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
CAREER: Complexity of quantum many-body systems: learnability, approximations, and entanglement
职业:量子多体系统的复杂性:可学习性、近似和纠缠
- 批准号:
2238836 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
CAREER: Towards Low-Energy Tests of Quantum Gravity with AMO Systems
职业生涯:利用 AMO 系统进行量子引力的低能量测试
- 批准号:
2239498 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
CAREER: The Research of Noise-Aware Scheduling for Noisy Intermediate-Scale Quantum Systems
职业:噪声中尺度量子系统的噪声感知调度研究
- 批准号:
2238734 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Standard Grant