CAREER: Search-Based Optimization of Combinatorial Structures via Expensive Experiments

职业:通过昂贵的实验进行基于搜索的组合结构优化

基本信息

  • 批准号:
    1845922
  • 负责人:
  • 金额:
    $ 54.97万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-01-01 至 2024-12-31
  • 项目状态:
    已结题

项目摘要

Many design-optimization problems in science and engineering applications involve performing experiments that are expensive in terms of the consumed resources (computational or physical). These experiments are often guided by intuition and performed by human engineers and scientists in an series of investigations informed by results of prior experiments. This experimental design process can be very challenging when the design space is combinatorial with rich structure among the design variables (e.g., sets, sequences, and graphs). This five-year project is an integrated research, education, and outreach program focused on transforming the practice of optimizing combinatorial design spaces by developing new artificial intelligence (AI) based algorithms for such experiments. The research goal of this project is to develop a new search-based learning and optimization framework to address the challenges associated with optimizing combinatorial design spaces consisting of discrete and hybrid (mixture of discrete and continuous design variables) structures. This framework tightly integrates advances in machine learning and AI search to intelligently explore the design space by reasoning about the available resource budget and the usefulness of potential information the experiments may provide. The search-based framework will be extended to two novel settings towards the goal of improving the resource-efficiency for design optimization. First, the side-information generated by the experiments will be modeled and exploited appropriately. Second, multi-fidelity experiments that trade off accuracy and consumed resources will be leveraged based on their availability. The project will apply the developed algorithms to revolutionize the areas of electronic design automation, design of materials, and design of synthetic microbiomes via close collaboration with domain experts from these application areas. The techniques developed in this project will be made available to academia and industry through open-source software. Results will be disseminated widely through research papers, conference presentations, tutorials, and short courses to maximize the benefits to the scientific community. Educational and outreach activities will include a novel Ambassador program to improve the interest of community college students including under-represented minorities in computer science careers; involving undergraduate students in research projects; a short summer-course on data-driven design optimization for engineers and scientists at WSU; and recruiting and mentoring under-represented minority groups in computer science and engineering through an existing program called LSAMP at Washington State University.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
科学和工程应用中的许多设计优化问题都涉及执行在消耗资源(计算或物理)方面昂贵的实验。这些实验通常以直觉为指导,并由人类工程师和科学家进行一系列调查,这些研究以先前的实验结果告知。当设计空间与设计变量(例如集合,序列和图形)之间的丰富结构相结合时,这个实验设计过程可能非常具有挑战性。这个五年的项目是一项综合研究,教育和外展计划,致力于通过开发基于新的人工智能(AI)算法来改造​​组合设计空间的实践。该项目的研究目标是开发一个新的基于搜索的学习和优化框架,以应对与优化组合设计空间相关的挑战,该组合设计空间由离散和混合(离散和连续设计变量)结构组成。该框架紧密整合了机器学习和AI搜索的进步,以通过推理可用的资源预算以及实验可能提供的潜在信息的有用性来智能探索设计空间。基于搜索的框架将扩展到两个新颖的设置,以提高设计优化的资源效率。首先,将适当地对实验产生的侧信息进行建模和利用。其次,将根据其可用性来利用多余的实验,以权衡准确性和消耗资源。该项目将通过与这些应用领域的域专家进行密切合作,将开发的算法应用于彻底改变电子设计自动化,材料设计以及合成微生物组的设计领域。该项目中开发的技术将通过开源软件提供给学术界和行业。结果将通过研究论文,会议演讲,教程和短期课程来广泛传播,以最大程度地利用科学界的好处。教育和外展活动将包括一项新颖的大使计划,以提高社区大学生的兴趣,包括代表性不足的计算机科学职业;让本科生参与研究项目; WSU的工程师和科学家的数据驱动设计优化的简短夏季课程;以及通过现有的华盛顿州立大学LSAMP计划在计算机科学和工程领域的招聘和指导,这一奖项反映了NSF的法定任务,并被认为是通过基金会的智力优点和更广泛影响的审查标准通过评估来通过评估来支持的。

项目成果

期刊论文数量(21)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Design of Multi-Output Switched-Capacitor Voltage Regulator via Machine Learning
基于机器学习的多输出开关电容稳压器设计
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhiyuan Zhou*, Syrine Belakaria*
  • 通讯作者:
    Zhiyuan Zhou*, Syrine Belakaria*
Multi-Fidelity Multi-Objective Bayesian Optimization: An Output Space Entropy Search Approach
多保真多目标贝叶斯优化:一种输出空间熵搜索方法
Bayesian Optimization over Hybrid Spaces
  • DOI:
  • 发表时间:
    2021-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Aryan Deshwal;Syrine Belakaria;J. Doppa
  • 通讯作者:
    Aryan Deshwal;Syrine Belakaria;J. Doppa
Bayesian Optimization over Permutation Spaces
  • DOI:
    10.1609/aaai.v36i6.20604
  • 发表时间:
    2021-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Aryan Deshwal;Syrine Belakaria;J. Doppa;D. Kim
  • 通讯作者:
    Aryan Deshwal;Syrine Belakaria;J. Doppa;D. Kim
Autonomous Design Space Exploration of Computing Systems for Sustainability: Opportunities and Challenges
  • DOI:
    10.1109/mdat.2019.2932894
  • 发表时间:
    2019-10-01
  • 期刊:
  • 影响因子:
    2
  • 作者:
    Doppa, Janardhan Rao;Bogdan, Paul;Rosca, Justinian
  • 通讯作者:
    Rosca, Justinian
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Janardhan Rao Doppa其他文献

Janardhan Rao Doppa的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Janardhan Rao Doppa', 18)}}的其他基金

Collaborative Research: CNS Core: Medium: Exploiting Synergies Between Machine-Learning Algorithms and Hardware Heterogeneity for High-Performance and Reliable Manycore Computing
合作研究:CNS Core:Medium:利用机器学习算法和硬件异构性之间的协同作用实现高性能和可靠的众核计算
  • 批准号:
    1955353
  • 财政年份:
    2020
  • 资助金额:
    $ 54.97万
  • 项目类别:
    Continuing Grant
OAC Core: Small: Sust-CI: A Machine Learning based Approach to Make Advanced Cyberinfrastructure Applications More Efficient and Sustainable
OAC 核心:小型:Sust-CI:基于机器学习的方法,使先进的网络基础设施应用程序更加高效和可持续
  • 批准号:
    1910213
  • 财政年份:
    2019
  • 资助金额:
    $ 54.97万
  • 项目类别:
    Standard Grant

相似国自然基金

基于规则驱动的多模态模型搜索研究
  • 批准号:
    62306084
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于深度生成模型的团簇结构高效搜索和逆向设计
  • 批准号:
    12374254
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
基于FAST的射电脉冲星搜索和候选识别的深度学习方法研究
  • 批准号:
    12373107
  • 批准年份:
    2023
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
基于自主学习的大规模多目标优化问题搜索空间缩减策略研究
  • 批准号:
    62362056
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
基于多神经节协同电刺激的生物机器人低衰减运动控制及其集群协同搜索技术研究
  • 批准号:
    52375011
  • 批准年份:
    2023
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目

相似海外基金

Prompt-Based and Contrastive Learning for Sensitivity-Aware Search
用于敏感性感知搜索的基于提示和对比的学习
  • 批准号:
    2812964
  • 财政年份:
    2023
  • 资助金额:
    $ 54.97万
  • 项目类别:
    Studentship
Search for therapeutic target molecules based on temporal hierarchical analysis of Oral squamous cell carcinoma and functional RNA molecules
基于口腔鳞状细胞癌和功能RNA分子的时间层次分析寻找治疗靶分子
  • 批准号:
    23K16142
  • 财政年份:
    2023
  • 资助金额:
    $ 54.97万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Proposal for A Stochastic-Signal-Model-Based Search for Intermittent Gravitational-Wave Backgrounds
基于随机信号模型的间歇引力波背景搜索提案
  • 批准号:
    2400301
  • 财政年份:
    2023
  • 资助金额:
    $ 54.97万
  • 项目类别:
    Continuing Grant
Study for galaxy evolution in dense environment based on a systematic search for galaxy protoclusters
基于系统搜索星系原团的稠密环境下星系演化研究
  • 批准号:
    22KJ0834
  • 财政年份:
    2023
  • 资助金额:
    $ 54.97万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Verification of teaching effectiveness based on a elementary school foreign language classroom corpus and development of a CEFR-J compliant teaching method search tool
基于小学外语课堂语料库的教学效果验证及符合CEFR-J标准的教法检索工具开发
  • 批准号:
    23K00708
  • 财政年份:
    2023
  • 资助金额:
    $ 54.97万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了