BTT EAGER: Improving Crop Yield Prediction by Integrating Machine Learning with Process-Based Crop Models
BTT EAGER:通过将机器学习与基于过程的作物模型相结合来改进作物产量预测
基本信息
- 批准号:1842097
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-03-01 至 2023-02-28
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Predicting crop yield is central to addressing emerging challenges in food security, particularly in an era of global climate change. Currently, machine learning and crop modeling are among the most commonly used approaches for yield prediction. This award supports fundamental research to combine the strengths of machine learning and crop models. Machine learning algorithms will be used to predict intermediate plant traits, which will then be fed into a crop model to predict grain yields across different environment and field management practices. Both conception and execution of this EAGER project depend on collaborations across multiple disciplines, including high-throughput phenotyping, object recognition, machine learning, optimization, computer simulation, and crop modeling. If successful, this research is expected to improve not only accuracy but also interpretability of yield prediction models, which will open numerous opportunities for downstream research and discoveries. The interdisciplinary effort will enhance the impact of science and engineering education across disciplines, while providing a collaborative and inclusive environment for all students to engage in cutting edge research activities.Underlying yield prediction is one of the grand challenges of biology: understanding how phenotype is determined by genotype, environment, and their interactions. Machine learning algorithms are able to predict crop phenotype to reasonable accuracy based on genotype information, but most models have a black box structure and their results are hard to interpret. On the other hand, crop models offer biological insights into causes of phenotypic variation by providing explicit explanations of the interactions between traits and environmental conditions in different phases of the crop growth cycle, but the collection of trait measurement data and calibration of model coefficients are labor intensive, time consuming, and costly. The proposed approach is a nested model. Deep learning algorithms will be trained to predict leaf appearance rate from genotype and empirically measured trait data. Training data will be extracted from images of plant leaves obtained via field experiments that employ novel phenotyping technique. Next, the resulting predicted traits and environment data will be fed into the crop model to predict yield. If proven effective, this approach can be applied to study other plant traits to improve crop yield prediction.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
预测作物产量对于应对粮食安全方面新出现的挑战至关重要,特别是在全球气候变化的时代。目前,机器学习和作物建模是最常用的产量预测方法之一。该奖项支持结合机器学习和作物模型优势的基础研究。机器学习算法将用于预测中间植物性状,然后将其输入作物模型以预测不同环境和田间管理实践的谷物产量。该 EAGER 项目的构思和执行都依赖于跨多个学科的合作,包括高通量表型分析、物体识别、机器学习、优化、计算机模拟和作物建模。如果成功,这项研究预计不仅会提高产量预测模型的准确性,还会提高其可解释性,这将为下游研究和发现带来大量机会。跨学科的努力将增强科学和工程教育跨学科的影响,同时为所有学生提供一个协作和包容的环境,让他们参与前沿的研究活动。潜在的产量预测是生物学的重大挑战之一:了解表型是如何确定的基因型、环境及其相互作用。机器学习算法能够根据基因型信息以合理的精度预测作物表型,但大多数模型具有黑盒结构,其结果难以解释。另一方面,作物模型通过对作物生长周期不同阶段的性状与环境条件之间的相互作用提供明确的解释,为表型变异的原因提供了生物学见解,但性状测量数据的收集和模型系数的校准是劳力。密集、耗时且成本高昂。所提出的方法是嵌套模型。将训练深度学习算法,根据基因型和经验测量的性状数据预测叶子出现率。训练数据将从采用新颖表型分析技术的田间实验获得的植物叶子图像中提取。接下来,所得的预测性状和环境数据将被输入作物模型以预测产量。如果被证明有效,这种方法可用于研究其他植物性状,以改善作物产量预测。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lizhi Wang其他文献
Mismatched Multiplex PCR Amplification and Subsequent RFLP Analysis to Simultaneously Identify Polymorphisms of Erythrocytic ESD, GLO1, and GPT Genes *
不匹配的多重 PCR 扩增和随后的 RFLP 分析可同时识别红细胞 ESD、GLO1 和 GPT 基因的多态性 *
- DOI:
10.1111/j.1556-4029.2010.01573.x - 发表时间:
2011 - 期刊:
- 影响因子:1.6
- 作者:
H. Pang;Ye Ding;Yan Li;Lizhi Wang;X. Tian;Bao;M. Ding - 通讯作者:
M. Ding
Effects of Nutritional Deprivation and Re-Alimentation on the Feed Efficiency, Blood Biochemistry, and Rumen Microflora in Yaks (Bos grunniens)
营养剥夺和重新营养对牦牛 (Bos grunniens) 饲料效率、血液生化和瘤胃微生物区系的影响
- DOI:
10.3390/ani9100807 - 发表时间:
2019-10 - 期刊:
- 影响因子:3
- 作者:
Huawei Zou;Rui Hu;Zhisheng Wang;Ali Shah;Shaoyu Zeng;Quanhui Peng;Bai Xue;Lizhi Wang;Xiangfei Zhang;Xueying Wang;Junhua Shi;Fengpeng Li;Lei Zeng - 通讯作者:
Lei Zeng
Cobalt-catalyzed Aerobic Oxidation of Eugenol to Vanillin and Vanillic Acid
钴催化丁子香酚有氧氧化生成香草醛和香草酸
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
H. Mao;Lizhi Wang;Feifei Zhao;Jianxin Wu;Haohua Huo;Jun Yu - 通讯作者:
Jun Yu
Multifunctional Metallo-Organic Vesicles Displaying Aggregation-Induced Emission: Two-Photon Cell-Imaging, Drug Delivery, and Specific Detection of Zinc Ion
显示聚集诱导发射的多功能金属有机囊泡:双光子细胞成像、药物递送和锌离子的特异性检测
- DOI:
10.1021/acsanm.8b00226 - 发表时间:
2018-04 - 期刊:
- 影响因子:5.9
- 作者:
Ying Wei;Lizhi Wang;Jianbin Huang;Junfang Zhao;Yun Yan - 通讯作者:
Yun Yan
Response of Potamogeton crispus root characteristics to sediment heterogeneity
- DOI:
10.1016/j.chnaes.2013.07.008 - 发表时间:
2013-10 - 期刊:
- 影响因子:0
- 作者:
Lizhi Wang - 通讯作者:
Lizhi Wang
Lizhi Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lizhi Wang', 18)}}的其他基金
LEAP-HI/GOALI: Engineering Crops for Genetic Adaptation to Changing Enviroments
LEAP-HI/GOALI:基因改造作物以适应不断变化的环境
- 批准号:
2421965 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
LEAP-HI/GOALI: Engineering Crops for Genetic Adaptation to Changing Enviroments
LEAP-HI/GOALI:基因改造作物以适应不断变化的环境
- 批准号:
1830478 - 财政年份:2018
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
相似国自然基金
渴望及其对农村居民收入差距的影响研究
- 批准号:71903117
- 批准年份:2019
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
威胁应对视角下的消费者触摸渴望及其补偿机制研究
- 批准号:71502075
- 批准年份:2015
- 资助金额:17.5 万元
- 项目类别:青年科学基金项目
相似海外基金
Education DCL: EAGER: Developing a Cyber-Aerial Computing Curriculum for Improving Sky-of-Privacy-Things Education through a Modular-Based Integrated Framework
教育 DCL:EAGER:开发网络航空计算课程,通过基于模块化的集成框架改善隐私天空教育
- 批准号:
2335681 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
EAGER: A bio-inspired approach for improving ice-prevention and ice-removal
EAGER:一种改善防冰和除冰的仿生方法
- 批准号:
2337118 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
EAGER: INFORMATE: Improving networks for organizational repositories through metadata augmentation, transformation and evolution
渴望:信息:通过元数据增强、转型和发展改善组织存储库网络
- 批准号:
2334426 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
EAGER: DCL: SaTC: Enabling Interdisciplinary Collaboration: Improving Human Discernment of Audio Deepfakes via Multi-level Information Augmentation
EAGER:DCL:SaTC:实现跨学科合作:通过多级信息增强提高人类对音频深赝品的识别能力
- 批准号:
2210011 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
EAGER: Improving the Data Quality of Measurements Collected with Drone-Mounted Sensors: A Fluid Dynamics Perspective with Guidelines for Optimum Sensor Placement and Housing
EAGER:提高无人机安装传感器收集的测量数据质量:流体动力学视角以及最佳传感器放置和外壳指南
- 批准号:
2125997 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Standard Grant