EAGER/Collaborative Research: Fundamentals of Acousto-Plasticity and Tribology in Ultrasonically Enhanced Incremental Sheet Forming

EAGER/协作研究:超声增强增量板材成形中的声塑性和摩擦学基础

基本信息

项目摘要

Today's fast-moving and competitive markets increase the frequency of product updates and rapidly expand demands for customized parts. Accordingly, high quality, low-cost prototyping and low volume manufacturing processes are desirable. No proven additive manufacturing or rapid prototyping approaches exist for sheet metals or large, thin parts - conventional additive manufacturing has too small of a build space and warps too much to produce parts such as automotive body panels. Incremental sheet forming (ISF), which utilizes a small tool to induce local deformation as it translates over the metal sheet, is a manufacturing approach that has been investigated recently because of its die-less setup, universal tooling and high flexibility. However, achieving dimensional and geometric accuracy as well as surface finish of the current ISF formed parts are a challenge, but the main drawback is the limited formability in the approach, leading to very high scrap rates. Ultrasonic vibration, known for its bulk material softening effects, surface modification and friction behavior improvements, offers promise in alleviating these concerns. This EArly-concept Grant for Exploratory Research (EAGER) award supports fundamental research to advance knowledge of the ultrasonic effects on material behavior in ISF processes. Success in this unique multidisciplinary study will lead to significant improved formability and process capabilities. Leveraging this new knowledge will expand ISF applications in various industries, such as aerospace, automotive, defense and medical, so that it has direct positive impact on the US national security and economic welfare. Students involved in the project will gain multidisciplinary knowledge and research capabilities including material, mechanical and manufacturing science and technologies. Outreach activities will emphasize the mentoring of women and underrepresented minorities. The objective of this project is an innovative improvement of the incremental sheet forming (ISF) process by effectively applying ultrasonic vibration to the tool during the forming operation. The potential benefits are to reduce forming force, increase formability, increase dimensional and geometrical tolerance and improve surface quality. This collaborative project includes an integrated experimental and modeling study of material behavior during tensile testing with ultrasonic vibration utilizing high speed digital image correlation analysis. The results will serve to design an effective approach for incorporating ultrasonic energy into ISF process. Ultrasonically assisted ISF will then be performed under different conditions. The interaction mechanisms between ultrasonic vibration and material deformation during ISF will be studied in terms of in-process variables, post-processing properties and multi-scale microstructure. The effect of ultrasonic vibration on both surface and bulk properties will be studied, including the impact on texture and grain size. The goals of this project are (1) understanding of the fundamental principles that govern the material behavior under ultrasonic vibration and (2) demonstration of the improvements enabled by ultrasonically assisted incremental forming process for complex free form geometries.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
当今的快速发展和竞争性市场增加了产品更新的频率,并迅速扩大了对定制零件的需求。因此,需要高质量的低成本原型制造和低容量制造工艺。对于金属或大型薄零件,没有经过验证的添加剂制造或快速原型制造方法 - 传统的添加剂制造太小的构建空间和扭曲太多而无法产生诸如汽车车身面板之类的零件。增量板形成(ISF),它利用小工具在金属板上翻译时诱导局部变形,这是一种制造方法,由于其无模具设置,通用工具和高灵活性,该方法最近进行了研究。但是,实现尺寸和几何准确性以及当前ISF形成的零件的表面表面是一个挑战,但是主要缺点是方法的有限性,导致了极高的废料率。超声波振动以其大量材料软化效果,表面修饰和摩擦行为改善而闻名,可以减轻这些关注点。这项早期概念授予探索性研究奖(急切)奖支持基本研究,以促进对ISF过程中对材料行为的超声效应的了解。在这项独特的多学科研究中的成功将导致显着改善的形成性和过程能力。利用这一新知识将扩大在航空航天,汽车,国防和医疗等各个行业中的ISF应用程序,以使其对美国国家安全和经济福利有直接的积极影响。参与该项目的学生将获得多学科知识和研究能力,包括材料,机械和制造科学和技术。外展活动将强调妇女和代表性不足的少数群体的指导。该项目的目的是通过在成型操作期间有效地应用超声振动来对增量表形成(ISF)过程进行创新改进。潜在的好处是减少形成力,提高形成性,增加尺寸和几何耐受性并提高表面质量。该协作项目包括使用高速数字图像相关分析的超声振动期间对材料行为进行综合实验和建模研究。 结果将有助于设计将超声波能量纳入ISF过程的有效方法。然后将在不同条件下进行超声辅助的ISF。 ISF期间超声波振动与材料变形之间的相互作用机制将根据进程变量,后处理属性和多尺度微观结构进行研究。将研究超声振动对表面和散装特性的影响,包括对纹理和晶粒尺寸的影响。该项目的目标是(1)理解在超声振动下控制物质行为的基本原理,以及(2)通过超声辅助的增量形成过程来证明复杂形式的几何形式的改进,这奖反映了NSF的法定任务,并通过对基金会的智力进行了评估,并以评估的评估值得评估。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Applying ultrasonic vibration during single-point and two-point incremental sheet forming
  • DOI:
    10.1016/j.promfg.2019.06.137
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Randy Cheng;N. Wiley;M. Short;Xun Liu;A. Taub
  • 通讯作者:
    Randy Cheng;N. Wiley;M. Short;Xun Liu;A. Taub
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alan Taub其他文献

Effect of enzyme retting conditions on bast bundle differentiation and mechanical properties of flax technical fibers
  • DOI:
    10.1016/j.indcrop.2023.117478
  • 发表时间:
    2023-12-01
  • 期刊:
  • 影响因子:
  • 作者:
    Anshul Singhal;Jionghua Jin;Mihaela Banu;Alan Taub
  • 通讯作者:
    Alan Taub

Alan Taub的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alan Taub', 18)}}的其他基金

GOALI/Collaborative Research: Improving Incremental Sheet Forming by Ultrasonically Enhanced Material Deformation
GOALI/合作研究:通过超声波增强材料变形改进增量板材成型
  • 批准号:
    2018963
  • 财政年份:
    2020
  • 资助金额:
    $ 9.17万
  • 项目类别:
    Standard Grant
Manufacturing USA/GOALI: Visualizing Nanoscale Evolution during Aluminum Alloy Melt Processing
美国制造/GOALI:铝合金熔体加工过程中纳米级演化的可视化
  • 批准号:
    1762657
  • 财政年份:
    2018
  • 资助金额:
    $ 9.17万
  • 项目类别:
    Standard Grant

相似国自然基金

临时团队协作历史对协作主动行为的影响研究:基于社会网络视角
  • 批准号:
    72302101
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
在线医疗团队协作模式与绩效提升策略研究
  • 批准号:
    72371111
  • 批准年份:
    2023
  • 资助金额:
    41 万元
  • 项目类别:
    面上项目
数智背景下的团队人力资本层级结构类型、团队协作过程与团队效能结果之间关系的研究
  • 批准号:
    72372084
  • 批准年份:
    2023
  • 资助金额:
    40 万元
  • 项目类别:
    面上项目
A-型结晶抗性淀粉调控肠道细菌协作产丁酸机制研究
  • 批准号:
    32302064
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向人机接触式协同作业的协作机器人交互控制方法研究
  • 批准号:
    62373044
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: EAGER: The next crisis for coral reefs is how to study vanishing coral species; AUVs equipped with AI may be the only tool for the job
合作研究:EAGER:珊瑚礁的下一个危机是如何研究正在消失的珊瑚物种;
  • 批准号:
    2333604
  • 财政年份:
    2024
  • 资助金额:
    $ 9.17万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: An LLM-Powered Framework for G-Code Comprehension and Retrieval
EAGER/协作研究:LLM 支持的 G 代码理解和检索框架
  • 批准号:
    2347624
  • 财政年份:
    2024
  • 资助金额:
    $ 9.17万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: Revealing the Physical Mechanisms Underlying the Extraordinary Stability of Flying Insects
EAGER/合作研究:揭示飞行昆虫非凡稳定性的物理机制
  • 批准号:
    2344215
  • 财政年份:
    2024
  • 资助金额:
    $ 9.17万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
  • 批准号:
    2345581
  • 财政年份:
    2024
  • 资助金额:
    $ 9.17万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
  • 批准号:
    2345582
  • 财政年份:
    2024
  • 资助金额:
    $ 9.17万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了