EAGER: Enabling Quantum Leap: Driven Non-Equilibrium Room Temperature Quantum States
EAGER:实现量子飞跃:驱动非平衡室温量子态
基本信息
- 批准号:1838507
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-07-15 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Nontechnical description: Quantum-information science promises to revolutionize computation and communication, as well as our fundamental understanding of complex quantum systems. Qubits, the fundamental units of quantum computation, are the quantum analogs of the binary states of classical computers. A fundamental requirement of qubits is that the time over which they retain the encoded information, known as lifetime, is long compared to the operations that manipulate them. Here, the research team proposes a method to dramatically increase qubit lifetimes in specialized two-dimensional semiconductor materials. The main mechanism by which information in a qubit is lost is through interactions of the system and its environment, much like a pendulum is slowed down by friction at its suspension point. A common approach to increasing qubit lifetime is to isolate the system, analogous to lubricating the point of suspension of the pendulum, but this is highly impractical for many quantum information applications. The approach proposed here is to periodically decouple the system from its environment using various external controls. In this way, qubit lifetime is extended even at room temperature, greatly expanding the range of materials that can be used for quantum information applications. These research aims are naturally integrated with an educational plan that seeks to advance undergraduate, graduate, and postdoctoral training. The mechanism of this program is the development of online tutorial courses and outreach work that promotes science learning to a broad audience.Technical description: A major challenge in quantum information sciences has been the prevalence of short-lived coherences between quantum states, which impede practical utilization of quantum phenomena. This is especially problematic at room temperature where the environment causes large energy fluctuations that greatly accelerate decoherence. Here, the research team proposes a method to dramatically increase electronic coherence times in quantum-confined two-dimensional (2D) semiconductors at room temperature. The approach is multi-faceted: 1) perform 'single' particle measurements to minimize heterogeneous broadening, 2) identify transient excitonic states that are well-below the bandgap of the materials, and 3) create unique decoherence-free subspaces by optical driving fields that decouple the excitons from strongly coupled phonons, thereby giving rise to long-lived coherences among electronic states of matter. The proposed platform based on highly tunable 2D organic-inorganic perovskite crystals is used to create robust quantum states far from thermal equilibrium for applications in quantum sensing, quantum transport, and quantum information processing. 2D perovskites are ideal materials for this purpose because they exhibit a large manifold of transient and strongly-coupled exciton states that can be used as qubits in quantum information processing and sensing. The approach combines ideas from magnetic resonance, quantum chemistry, coherent spectroscopy, and quantum optics in order to create long-lived coherences with orders-of-magnitude longer electronic coherence times than currently possible in condensed-phase molecular systems under ambient conditions. The work proposed here enables understanding of how structural and chemical changes to the system, as well as modifications of the bath through external perturbations, affect decoherence far from thermal equilibrium. This project incorporates an educational component that advances undergraduate and graduate training through the creation of online tutorial courses that disseminate the research findings and the scientific background necessary to understand them. These courses are made available to a wide audience of students and teachers at the K-12 levels.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术描述:量子信息科学有望彻底改变计算和通信,以及我们对复杂量子系统的基本理解。 量子计算的基本单元是量子的量子,是古典计算机二元状态的量子类似物。 Qubits的基本要求是,与操纵它们的操作相比,它们保留编码信息(称为终生)的时间长。 在这里,研究小组提出了一种在专门的二维半导体材料中大大增加量子寿命的方法。丢失量子信息中信息的主要机制是通过系统及其环境的相互作用,就像摆在悬架点在悬架点上被摩擦减慢一样。 增加量子寿命的一种常见方法是隔离系统,类似于润滑摆的悬浮点,但这对于许多量子信息应用来说是非常不切实际的。此处提出的方法是使用各种外部控件定期将系统与环境解散。这样,即使在室温下,量子寿命也会延长,从而大大扩展了可用于量子信息应用的材料范围。这些研究的目标是与一项旨在提高本科,研究生和博士后培训的教育计划自然融合的。该计划的机制是开发在线教程课程和宣传工作,将科学学习促进了广泛的受众群体。技术描述:量子信息科学的主要挑战是量子状态之间短暂寿命相干的普遍性,这阻碍了量子现象的实际利用。在室温下,这尤其有问题,在室温下,环境会引起大量加速反应的巨大能量波动。 在这里,研究团队提出了一种在室温下大幅增加量子限制的二维(2D)半导体的电子相干时间的方法。 该方法是多方面的:1)执行“单一”粒子测量以最大程度地减少异质扩展,2)识别材料带镜头的瞬态激发态状态,这些状态良好,而3)3)创建独特的无抗性子空间,通过将兴奋子从强烈的声音中驱动的光学驾驶领域,从而使较长的元素启用,从而使兴奋剂的兴奋性能够延伸,从而使对持久的群体产生了启用的速度。提出的基于高度可调节的2D有机无机钙钛矿晶体的平台用于创建远离热平衡的稳健量子状态,以用于量子传感,量子传输和量子信息处理。 2D钙钛矿是用于此目的的理想材料,因为它们表现出大量的瞬态和强耦合的激子状态,可以用作量子信息处理和传感中的量子。 该方法结合了磁共振,量子化学,相干光谱和量子光学器件中的思想,以创建与当前在环境条件下凝聚相分子系统中可能更长的电子相干性时间的长寿命相干。此处提出的工作使人们了解结构和化学物质如何变化系统的变化以及通过外部扰动对浴缸的修改会影响远离热平衡的偏移。该项目结合了一个教育组成部分,通过创建在线教程课程来推进本科和研究生培训,该课程传播研究结果以及了解它们所需的科学背景。这些课程可在K-12级别的众多学生和老师中获得。该奖项反映了NSF的法定任务,并且使用基金会的知识分子优点和更广泛的影响评估标准,被认为值得通过评估来获得支持。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Negative Pressure Engineering with Large Cage Cations in 2D Halide Perovskites Causes Lattice Softening
- DOI:10.1021/jacs.0c03860
- 发表时间:2020-07-01
- 期刊:
- 影响因子:15
- 作者:Li, Xiaotong;Fu, Yongping;Kanatzidis, Mercouri G.
- 通讯作者:Kanatzidis, Mercouri G.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mercouri Kanatzidis其他文献
Photo-induced Polaronic Response of SnSe Probed by Ultrafast Multi-THz Spectroscopy
超快多太赫兹光谱探测 SnSe 的光致极化响应
- DOI:
10.1364/up.2022.w4a.17 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
B. Dringoli;M. Sutton;Zhongzhen Luo;Mercouri Kanatzidis;D. Cooke - 通讯作者:
D. Cooke
Role of Stoichiometry in the Growth of Large Pb2P2Se6 Crystals for Nuclear Radiation Detection
化学计量在用于核辐射检测的大型 Pb2P2Se6 晶体生长中的作用
- DOI:
10.1021/acsphotonics.7b01119 - 发表时间:
2017-12 - 期刊:
- 影响因子:7
- 作者:
Yadong Xu;Xu Fu;Hongjian Zheng;Yihui He;Wenwen Lin;Kyle McCall;Zhifu Liu;Sanjib Das;Bruce Wessels;Mercouri Kanatzidis - 通讯作者:
Mercouri Kanatzidis
Photoinduced Phase Change in SnSe Probed by Ultrafast Multi-THz Spectroscopy
超快多太赫兹光谱探测 SnSe 光致相变
- DOI:
10.1109/irmmw-thz50927.2022.9895536 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
B. Dringoli;M. Sutton;Zhongzhen Luo;Mercouri Kanatzidis;D. Cooke - 通讯作者:
D. Cooke
Mercouri Kanatzidis的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mercouri Kanatzidis', 18)}}的其他基金
Defining Reaction Paths for Chalcogenide Materials Discovery
定义硫族化物材料发现的反应路径
- 批准号:
2305731 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Synthesis of Complex and Advanced Chalcogenide Materials
复杂和先进硫族化物材料的合成
- 批准号:
2003476 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
MRI: Acquisition of A Single Crystal Diffractometer With A Silver Microsource and A Detector Optimized for Silver Radiation
MRI:获取带有银微源和针对银辐射优化的探测器的单晶衍射仪
- 批准号:
1920248 - 财政年份:2019
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Solid State Chemistry of Complex Chalcogenides
复杂硫属化物的固态化学
- 批准号:
1708254 - 财政年份:2017
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Synthesis and Properties of Complex Crystalline and Glassy Metal Chalcogenides
复杂晶态和玻璃态金属硫属化物的合成与性能
- 批准号:
1410169 - 财政年份:2014
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Solid State Chemistry of Chalcogenides for Materials Discovery
用于材料发现的硫族化物固态化学
- 批准号:
1104965 - 财政年份:2011
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
NSF/DOE Thermoelectrics Partnership, Collaborative Proposal: Project SEEBECK - Saving Energy Effectively By Engaging in Collaborative research and sharing Knowledge
NSF/DOE 热电伙伴关系,协作提案:SEEBECK 项目 - 通过参与协作研究和共享知识有效节约能源
- 批准号:
1048728 - 财政年份:2011
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
ARI-MA: Design and Growth of High Density, Wide Band-Gap Semiconductor Materials
ARI-MA:高密度、宽带隙半导体材料的设计和生长
- 批准号:
0938810 - 财政年份:2009
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Solid State Chemistry of Crystalline and Glassy Chalcogenides
晶体和玻璃态硫属化物的固态化学
- 批准号:
0801855 - 财政年份:2008
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
2008 Gordon Research Conference on Solid State Chemistry, New London, NH, July 27 - August 1, 2008
2008 年戈登固态化学研究会议,新罕布什尔州新伦敦,2008 年 7 月 27 日至 8 月 1 日
- 批准号:
0803573 - 财政年份:2008
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
相似海外基金
EAGER: Quantum Manufacturing: Enabling Integrated Quantum Network Nodes
EAGER:量子制造:实现集成量子网络节点
- 批准号:
2240267 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
EAGER: Enabling Quantum Leap: Temperature dependence of optical nonlinearities of monolayer transition-metal dichalcogenides
EAGER:实现量子飞跃:单层过渡金属二硫属化物光学非线性的温度依赖性
- 批准号:
1838497 - 财政年份:2018
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
EAGER: Enabling Quantum Leap: Electrically tunable, long-distance coherent coupling between room temperature qubits mediated by magnons in low-dimensional magnets
EAGER:实现量子飞跃:由低维磁体中的磁振子介导的室温量子位之间的电可调、长距离相干耦合
- 批准号:
1838513 - 财政年份:2018
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
EAGER: Enabling Quantum Leap: Topological Nanoparticles as Potential Room-Temperature Qubits
EAGER:实现量子飞跃:拓扑纳米粒子作为潜在的室温量子位
- 批准号:
1838504 - 财政年份:2018
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
EAGER: Enabling Quantum Leap: Organic Magnonics for room temperature Quantum Logic
EAGER:实现量子飞跃:室温量子逻辑的有机磁振子学
- 批准号:
1836989 - 财政年份:2018
- 资助金额:
$ 30万 - 项目类别:
Standard Grant