Collaborative Research: Framework: Data: NSCI: HDR: GeoSCIFramework: Scalable Real-Time Streaming Analytics and Machine Learning for Geoscience and Hazards Research
协作研究:框架:数据:NSCI:HDR:GeoSCIFramework:用于地球科学和灾害研究的可扩展实时流分析和机器学习
基本信息
- 批准号:1835661
- 负责人:
- 金额:$ 40.55万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-01-01 至 2024-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project develops a real-time processing system capable of handling a large mix of sensor observations. The focus of this system is automation of the detection of natural hazard events using machine learning, as the events are occurring. A four-organization collaboration (UNAVCO, University of Colorado, University of Oregon, and Rutgers University) develops a data framework for generalized real-time streaming analytics and machine learning for geoscience and hazards research. This work will support rapid analysis and understanding of data associated with hazardous events (earthquakes, volcanic eruptions, tsunamis). This project uses a collaboration between computer scientists and geoscientists to develop a data framework for generalized real-time streaming analytics and machine learning for geoscience and hazards research. It focuses on the aggregation and integration of a large number of data streams into a coherent system that supports analysis of the data streams in real-time. The framework will offer machine-learning-based tools designed to detect signals of events, such as earthquakes and tsunamis, that might only be detectable when looking at a broad selection of observational inputs. The architecture sets up a fast data pipeline by combining a group of open source components that make big data applications viable and easier to develop. Data sources for the project draw primarily upon the 1500+ sensors from the EarthScope networks currently managed by UNAVCO and the Incorporated Research Institutions for Seismology (IRIS), as well as the Ocean Observatories Initiative (OOI) cabled array data managed by Rutgers University. Machine learning (ML) algorithms will be researched and applied to the tsunami and earthquake use cases. Initially, the project plans to employ an advanced convolutional neural network method in a multi-data environment. The method has only been applied to seismic waveforms, so the project will explore extending the method to a multi-data environment. The approach is expected to be extensible beyond detection and characterization of earthquakes to include the onset of other geophysical signals such as slow-slip events or magmatic intrusion, expanding the potential for new scientific discoveries. The framework is applied to use cases in the Cascadia subduction zone and Yellowstone: these locations combine the expertise of the science team with locations where EarthScope and OOI have the greatest concentration of instruments. The architecture will be transportable and scalable, running in a Docker environment on laptops, local clusters and the cloud. Integral to the project will be development, documentation and training using collaborative online resources such as GitLab and Jupyter Notebooks, and utilizing NSF XSEDE resources to make larger datasets and computational resources more widely available.This award by the NSF Office of Advanced Cyberinfrastructure is jointly supported by the Cross-Cutting Program and Division of Earth Sciences within the NSF Directorate for Geosciences, the Big Data Science and Engineering Program within the Directorate for Computer and Information Science and Engineering, and the EarthCube Program jointly sponsored by the NSF Directorate for Geosciences and the Office of Advanced Cyberinfrastructure.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目开发了一个实时处理系统,能够处理大量传感器观测。该系统的重点是随着事件的发生,使用机器学习对自然危害事件的检测自动化。 四组织合作(UNAVCO,科罗拉多大学,俄勒冈大学和罗格斯大学)开发了一个数据框架,用于用于地球科学和危害研究的广义实时流媒体分析和机器学习。 这项工作将支持对与危险事件(地震,火山喷发,海啸)相关的数据的快速分析和理解。 该项目使用计算机科学家和地球科学家之间的合作来开发一个数据框架,用于用于地球科学和危害研究的广义实时流媒体分析和机器学习。 它着重于将大量数据流的聚合和集成到一个相干系统中,该系统支持实时分析数据流。该框架将提供基于机器学习的工具,该工具旨在检测事件的信号,例如地震和海啸,只有在查看广泛的观察输入选择时才能检测到。 该体系结构通过组合一组开源组件来设置快速数据管道,这些开源组件使大数据应用程序可行且更易于开发。该项目的数据源主要借鉴了来自UNAVCO目前管理的Earthscope网络的1500多个传感器,以及由Rutgers University管理的INSISMOLOGY(IRIS)以及海洋观测机构倡议(OOI)充电阵列数据。 机器学习(ML)算法将进行研究并应用于海啸和地震用例。 最初,该项目计划在多DATA环境中采用先进的卷积神经网络方法。 该方法仅应用于地震波形,因此该项目将探索将方法扩展到多数据环境。 预计该方法将是可扩展的,无法检测到地震的检测和表征,包括其他地球物理信号的发作,例如慢滑行事件或岩浆入侵,从而扩大了新科学发现的潜力。 该框架适用于卡斯卡迪亚俯冲带和黄石的用例:这些位置将科学团队的专业知识与Earthscope和OOI的仪器浓度最高的位置相结合。 该体系结构将是可运输和可扩展的,在笔记本电脑,本地簇和云的码头环境中运行。 Integral to the project will be development, documentation and training using collaborative online resources such as GitLab and Jupyter Notebooks, and utilizing NSF XSEDE resources to make larger datasets and computational resources more widely available.This award by the NSF Office of Advanced Cyberinfrastructure is jointly supported by the Cross-Cutting Program and Division of Earth Sciences within the NSF Directorate for Geosciences, the Big Data Science and Engineering Program在计算机和信息科学和工程局以及NSF地球科学局和高级网络基础设施办公室共同赞助的EarthCube计划中,该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子优点和更广泛影响的评估来通过评估来获得支持的。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Real‐Time Fault Tracking and Ground Motion Prediction for Large Earthquakes With HR‐GNSS and Deep Learning
利用 HR-GNSS 和深度学习对大地震进行实时故障跟踪和地面运动预测
- DOI:10.1029/2023jb027255
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Lin, Jiun‐Ting;Melgar, Diego;Sahakian, Valerie J.;Thomas, Amanda M.;Searcy, Jacob
- 通讯作者:Searcy, Jacob
Deep Coseismic Slip in the Cascadia Megathrust Can Be Consistent With Coastal Subsidence
卡斯卡迪亚巨型逆冲断层中的深层同震滑动可能与海岸沉降一致
- DOI:10.1029/2021gl097404
- 发表时间:2022
- 期刊:
- 影响因子:5.2
- 作者:Melgar, Diego;Sahakian, Valerie J.;Thomas, Amanda M.
- 通讯作者:Thomas, Amanda M.
Generation and Validation of Broadband Synthetic P Waves in Semistochastic Models of Large Earthquakes
- DOI:10.1785/0120200049
- 发表时间:2020-08
- 期刊:
- 影响因子:3
- 作者:D. Goldberg;D. Melgar
- 通讯作者:D. Goldberg;D. Melgar
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Diego Melgar其他文献
Improvement of a tsunami scenario detection framework by using synthetic geodetic data
使用合成大地测量数据改进海啸情景检测框架
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Reika Nomura;Saneiki Fujita;Louise A. Hirao Vermare;Yu Otake;Shuji Moriguchi;Diego Melgar;Randall J. LeVeque;Kenjiro Terada - 通讯作者:
Kenjiro Terada
Detection of Hidden Low-Frequency Earthquakes in Southern 1 Vancouver Island with Deep Learning
利用深度学习检测温哥华岛南部隐藏的低频地震
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Jiun;Amanda M. Thomas;Loïc Bachelot;D. Toomey;Jacob Searcy;Diego Melgar - 通讯作者:
Diego Melgar
Diego Melgar的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Diego Melgar', 18)}}的其他基金
Collaborative Research: Constraining next generation Cascadia earthquake and tsunami hazard scenarios through integration of high-resolution field data and geophysical models
合作研究:通过集成高分辨率现场数据和地球物理模型来限制下一代卡斯卡迪亚地震和海啸灾害情景
- 批准号:
2325310 - 财政年份:2024
- 资助金额:
$ 40.55万 - 项目类别:
Standard Grant
Center Operations: Cascadia Region Earthquake Science Center (CRESCENT)
中心运营:卡斯卡迪亚地区地震科学中心(CRESCENT)
- 批准号:
2225286 - 财政年份:2023
- 资助金额:
$ 40.55万 - 项目类别:
Cooperative Agreement
相似国自然基金
多价框架核酸与CRISPR/Cas协作传感平台研究及三阴性乳腺癌术后监测应用
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
多价框架核酸与CRISPR/Cas协作传感平台研究及三阴性乳腺癌术后监测应用
- 批准号:22204104
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
基于高阶正则化半监督学习的多跟踪器框架模型及融合策略研究
- 批准号:61571362
- 批准年份:2015
- 资助金额:57.0 万元
- 项目类别:面上项目
表示模型框架下高光谱遥感影像分类若干技术研究
- 批准号:61571033
- 批准年份:2015
- 资助金额:57.0 万元
- 项目类别:面上项目
随机几何框架下的多层异构蜂窝网中物理层安全问题研究
- 批准号:61401510
- 批准年份:2014
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: An Integrated Framework for Learning-Enabled and Communication-Aware Hierarchical Distributed Optimization
协作研究:支持学习和通信感知的分层分布式优化的集成框架
- 批准号:
2331710 - 财政年份:2024
- 资助金额:
$ 40.55万 - 项目类别:
Standard Grant
Collaborative Research: An Integrated Framework for Learning-Enabled and Communication-Aware Hierarchical Distributed Optimization
协作研究:支持学习和通信感知的分层分布式优化的集成框架
- 批准号:
2331711 - 财政年份:2024
- 资助金额:
$ 40.55万 - 项目类别:
Standard Grant
EAGER/Collaborative Research: An LLM-Powered Framework for G-Code Comprehension and Retrieval
EAGER/协作研究:LLM 支持的 G 代码理解和检索框架
- 批准号:
2347624 - 财政年份:2024
- 资助金额:
$ 40.55万 - 项目类别:
Standard Grant
Collaborative Research: A Semiconductor Curriculum and Learning Framework for High-Schoolers Using Artificial Intelligence, Game Modules, and Hands-on Experiences
协作研究:利用人工智能、游戏模块和实践经验为高中生提供半导体课程和学习框架
- 批准号:
2342747 - 财政年份:2024
- 资助金额:
$ 40.55万 - 项目类别:
Standard Grant
Collaborative Research: Dynamic connectivity of river networks as a framework for identifying controls on flux propagation and assessing landscape vulnerability to change
合作研究:河流网络的动态连通性作为识别通量传播控制和评估景观变化脆弱性的框架
- 批准号:
2342936 - 财政年份:2024
- 资助金额:
$ 40.55万 - 项目类别:
Continuing Grant