Mechanobiology of Epithelial Monolayers under Shear Loading

剪切载荷下单层上皮的力学生物学

基本信息

  • 批准号:
    1834760
  • 负责人:
  • 金额:
    $ 57.07万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-04-01 至 2022-07-31
  • 项目状态:
    已结题

项目摘要

Mechanical interactions between cells govern the basic processes of life. We don't understand these mechanical effects enough, however, to explain many of the important questions in multicellular biology, tissue development, and disease progression that we already know are dependent on intercellular forces. Maintenance and turnover of the attachments between cells (adhesions) is critical to how cells can form a barrier between different parts of organs. Adhesion is important to wound healing, and also disruption of cell-cell adhesion is a precursor to cancer metastasis. Organ formation, wound healing and cancer metastasis involve large deformations and force generation, yet the mechanisms underlying the dynamic regulation of cell adhesions, how cells slide or shear past one another, or how cell-cell adhesions function under mechanical loading are not yet understood. The research goal is to understand how tissues distribute and respond to shear force transmitted through cell-cell junctions. The project will test how shear modifies collective cell behavior and reorganization of cellular architecture. Such changes are coupled to the biomechanical properties of cells and ultimately regulate tissue integrity, barrier functions and homeostasis. The research results will be incorporated into modules for teaching basic Engineering and Biology courses, and the development of undergraduate research experiences within our laboratories. The PIs actively participate in community outreach and research experiences for teachers and under-represented students.This research combines custom micro-fabricated cell culture platforms with force-sensing and displacement-actuation with mechanical analyses and cell biological methods such as pharmacological inhibitors and knockout cell lines. We study how externally applied and cell-generated forces dynamically modify collective cell behavior in response to shear disruption. Physiological development exhibits slow deformations while injury occurs on a faster timescale, thus we test the idea that collective cell mechanoresponse depends not only on load and tissue rigidity, but also on the applied loading rate. We will test the idea that dynamic cell-cell adhesion is governed by protein catch bonds with force- and rate-dependence. This work will deliver new platform technologies for mechanical manipulation and observation of epithelial tissues and test new models of force transfer and cell-cell communications across cell-cell adhesions and the cytoskeleton. Insights gained in this work will increase our understanding of epithelial homeostasis which underlies normal barrier function in each organ system.
细胞之间的机械相互作用控制生命的基本过程。 但是,我们不够理解这些机械效应,无法解释我们已经知道的多细胞生物学,组织发育和疾病进展中的许多重要问题,这些问题取决于细胞间力。细胞之间的附着(粘附)之间的附件维护和周转对于细胞如何在器官之间形成屏障至关重要。 粘附对于伤口愈合很重要,并且细胞 - 细胞粘附的破坏也是癌症转移的前体。器官形成,伤口愈合和癌症转移涉及大变形和力产生,但是细胞粘附动态调节的机制,细胞如何滑动或剪切彼此滑动或剪切,或者在机械负荷下的细胞细胞粘附功能如何尚未理解。研究目标是了解组织如何分布和响应通过细胞 - 细胞连接传递的剪切力。 该项目将测试剪切方式如何修饰集体细胞行为和细胞结构的重组。这种变化与细胞的生物力学特性耦合,并最终调节组织完整性,障碍功能和稳态。 研究结果将纳入教授基础工程和生物学课程的模块中,以及我们实验室内的本科研究经验的发展。 PI为教师和代表性不足的学生积极参与社区外展和研究经验。这项研究将自定义的微型细胞培养平台与力传感和置换型分析与机械分析和细胞生物学方法(例如药理抑制剂和淘汰细胞系)结合在一起。我们研究外部应用和细胞生成的力如何响应剪切破坏而动态地改变集体细胞行为。生理发育表现出缓慢的变形,而损伤发生在更快的时间尺度上,因此我们测试了集体细胞机械响应不仅取决于负载和组织刚度,而且还取决于施加的负载速率。我们将测试动态细胞 - 细胞粘附受蛋白质捕获键的影响和速率依赖性的观念。这项工作将提供新的平台技术,用于对上皮组织的机械操纵和观察,并测试跨细胞细胞粘连和细胞骨架的力传递和细胞 - 细胞通信的新模型。在这项工作中获得的见解将增加我们对每个器官系统正常屏障功能的上皮稳态的理解。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Controlled phage therapy by photothermal ablation of specific bacterial species using gold nanorods targeted by chimeric phages
MEMS device for applying shear and tension to an epithelium combined with fluorescent live cell imaging
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Beth Pruitt其他文献

Molecular Mechanisms and Cellular Models of Hypertrophic Cardiomyopathy: Insights from a Surprising Mutation
  • DOI:
    10.1016/j.bpj.2020.11.1639
  • 发表时间:
    2021-02-12
  • 期刊:
  • 影响因子:
  • 作者:
    Alison S. Vander Roest;Chao Liu;Kristina B. Kooiker;Makenna M. Morck;Beth Pruitt;Kenneth S. Campbell;Kathleen Ruppel;James A. Spudich;Daniel Bernstein
  • 通讯作者:
    Daniel Bernstein
Mechanobiology of Myosin Mutations and Myofibril Remodeling in iPSC-Cardiomyocytes
  • DOI:
    10.1016/j.bpj.2017.11.2720
  • 发表时间:
    2018-02-02
  • 期刊:
  • 影响因子:
  • 作者:
    Alison Schroer;Kristina Kooiker;Arjun Adhikari;Kathleen Ruppel;Daniel Bernstein;James Spudich;Beth Pruitt
  • 通讯作者:
    Beth Pruitt
Engineering viscoelastic alginate hydrogels for hiPSC cardiomyocyte culture
  • DOI:
    10.1016/j.bpj.2022.11.2442
  • 发表时间:
    2023-02-10
  • 期刊:
  • 影响因子:
  • 作者:
    Marissa Gionet-Gonzales;Jonah Rosas;Angela Pitenis;Beth Pruitt;Ryan Stowers
  • 通讯作者:
    Ryan Stowers
Measuring tension states of hiPSC-cardiomyocytes via traction force microscopy
  • DOI:
    10.1016/j.bpj.2022.11.2342
  • 发表时间:
    2023-02-10
  • 期刊:
  • 影响因子:
  • 作者:
    Gabriela Villalpando Torres;Kerry V. Lane;Samuel D. Feinstein;Liam Dow;Beth Pruitt
  • 通讯作者:
    Beth Pruitt
Changes in myosin biomechanics influence growth and maturation of iPSC-cardiomyocytes
  • DOI:
    10.1016/j.bpj.2022.11.1014
  • 发表时间:
    2023-02-10
  • 期刊:
  • 影响因子:
  • 作者:
    Daniel Bernstein;Alison S. Vander Roest;Sean Wu;Beth Pruitt;Mingming Zhao;Giovanni Fajardo;Kathleen Ruppel;James A. Spudich
  • 通讯作者:
    James A. Spudich

Beth Pruitt的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Beth Pruitt', 18)}}的其他基金

BRITE Fellow: The Mechanobiology of Sex and Stress
BRITE 研究员:性与压力的机械生物学
  • 批准号:
    2227509
  • 财政年份:
    2023
  • 资助金额:
    $ 57.07万
  • 项目类别:
    Standard Grant
NRT-URoL: Data Driven Biology
NRT-URoL:数据驱动生物学
  • 批准号:
    2125644
  • 财政年份:
    2021
  • 资助金额:
    $ 57.07万
  • 项目类别:
    Standard Grant
Mechanobiology of Epithelial Monolayers under Shear Loading
剪切载荷下单层上皮的力学生物学
  • 批准号:
    1662431
  • 财政年份:
    2017
  • 资助金额:
    $ 57.07万
  • 项目类别:
    Standard Grant
Student Travel - 12th International Workshop on Nanomechanical Sensing (NMC2015); Auckland, New Zealand.
学生旅行——第十二届纳米机械传感国际研讨会(NMC2015);
  • 批准号:
    1505547
  • 财政年份:
    2015
  • 资助金额:
    $ 57.07万
  • 项目类别:
    Standard Grant
Workshop:Student Travel - 10th International Workshop on Nanomechanical Sensing (NMC2013) To be held May 1-3 2013, Stanford, California
研讨会:学生旅行 - 第 10 届纳米机械传感国际研讨会 (NMC2013) 将于 2013 年 5 月 1-3 日在加利福尼亚州斯坦福举行
  • 批准号:
    1313779
  • 财政年份:
    2013
  • 资助金额:
    $ 57.07万
  • 项目类别:
    Standard Grant
EFRI-MIKS: Force Sensing and Remodeling by Cell-Cell Junctions in Multicellular Tissues
EFRI-MIKS:多细胞组织中细胞-细胞连接的力传感和重塑
  • 批准号:
    1136790
  • 财政年份:
    2011
  • 资助金额:
    $ 57.07万
  • 项目类别:
    Standard Grant
\NER: Coaxial Tip Piezoresistive Cantilever Probes for High-Resolution Scanning Gate Microscopy
NER:用于高分辨率扫描门显微镜的同轴尖端压阻悬臂探针
  • 批准号:
    0708031
  • 财政年份:
    2007
  • 资助金额:
    $ 57.07万
  • 项目类别:
    Standard Grant
EFRI-CBE: Engineering of cardiovascular cellular interfaces and tissue constructs
EFRI-CBE:心血管细胞界面和组织结构的工程
  • 批准号:
    0735551
  • 财政年份:
    2007
  • 资助金额:
    $ 57.07万
  • 项目类别:
    Standard Grant
CAREER: A Microsystems Approach to Cellular Manipulation and Interaction
职业:细胞操纵和交互的微系统方法
  • 批准号:
    0449400
  • 财政年份:
    2005
  • 资助金额:
    $ 57.07万
  • 项目类别:
    Standard Grant
Shear Stress Measurement in Liquid Environments Using MEMS Sensor Arrays
使用 MEMS 传感器阵列测量液体环境中的剪切应力
  • 批准号:
    0428889
  • 财政年份:
    2004
  • 资助金额:
    $ 57.07万
  • 项目类别:
    Standard Grant

相似国自然基金

USP13去泛素化SIRT6抑制晶状体上皮细胞氧化应激的分子机制研究
  • 批准号:
    82301192
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
核苷酸代谢酶氧化修饰调控上皮干细胞命运在口腔白斑病光动力治疗复发中的机制与意义研究
  • 批准号:
    82330029
  • 批准年份:
    2023
  • 资助金额:
    220 万元
  • 项目类别:
    重点项目
IL-36γ介导龈沟上皮-基质细胞间通讯驱动牙周炎病理免疫反应的机制研究
  • 批准号:
    82301073
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于单细胞测序探讨气道上皮细胞HLA-DR分子在吸烟诱导的气道过度炎症中的作用机制
  • 批准号:
    82370021
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目

相似海外基金

Damage-Free, Ultrasonic Cell Isolation from Retinal Pigment Epithelium (RPE) Monolayers
从视网膜色素上皮 (RPE) 单层中进行无损伤超声波细胞分离
  • 批准号:
    10717828
  • 财政年份:
    2023
  • 资助金额:
    $ 57.07万
  • 项目类别:
Fabrication of crypt patterned primary colon epithelial monolayers with embedded vascularization under perfusion in a customized high-throughput 384 well plate
在定制的高通量 384 孔板中灌注下嵌入血管化的隐窝图案化原代结肠上皮单层的制造
  • 批准号:
    575882-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 57.07万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Developing primary cell enteroid-derived intestinal epithelial monolayers to study barrier function
开发原代细胞肠样来源的肠上皮单层以研究屏障功能
  • 批准号:
    523542-2018
  • 财政年份:
    2018
  • 资助金额:
    $ 57.07万
  • 项目类别:
    Experience Awards (previously Industrial Undergraduate Student Research Awards)
Mechanobiology of Epithelial Monolayers under Shear Loading
剪切载荷下单层上皮的力学生物学
  • 批准号:
    1662431
  • 财政年份:
    2017
  • 资助金额:
    $ 57.07万
  • 项目类别:
    Standard Grant
Developing primary cell enteroid-derived intestinal epithelial monolayers to study barrier function
开发原代细胞肠样来源的肠上皮单层以研究屏障功能
  • 批准号:
    507647-2016
  • 财政年份:
    2016
  • 资助金额:
    $ 57.07万
  • 项目类别:
    Engage Grants Program
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了