Conference Proposal: Kylerec Student Workshop in Symplectic and Contact Geometry
会议提案:Kylerec 辛几何和接触几何学生研讨会
基本信息
- 批准号:1818138
- 负责人:
- 金额:$ 6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-04-01 至 2022-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This National Science Foundation award provides partial support for the next two Kylerec student workshops to be held in 2018 and 2019. The Kylerec workshop aims to introduce aspiring mathematicians in the fields of symplectic and contact geometry and from many institutions to vibrant areas of research, fostering collaboration, forming strong research ties between young researchers, and thus promoting future collaboration and research. The workshop is specifically designed to encourage the development of a diverse group of researchers in the fields of symplectic and contact geometry. It is a week-long intensive workshop, in which all activities occur under one roof. The lectures are delivered by the graduate student participants with the help of three to four mentors, who are emerging expert researchers in the field. This setup enhances communication skills, encourages active involvement of the participants and forging new collaborations.In 2018, the workshop will be held from May 25 to May 31 in the Leavenworth Lodge in Leavenworth, WA, and will be mentored by Thomas Kragh (Uppsala), Roberta Guadagni (U. Penn.), Jingyu Zhao (Brandeis) and Kyler Siegel (MIT). The topic is the nearby Lagrangian conjecture, which is a central open question about the symplectic topology of cotangent bundles, and has been a nexus for much of the recent technical development in the subject. The objective of this workshop is to understand the state of the art in this problem: including both the technical tools utilized, such as Fukaya categories, as well as some of the broader philosophy that has come out of work on this problem. Notes from the lectures and further information will be available on the website https://kylerec.wordpress.com/.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Eleny-Nicoleta Ionel其他文献
Eleny-Nicoleta Ionel的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Eleny-Nicoleta Ionel', 18)}}的其他基金
Moduli Spaces of Pseudoholomorphic Maps
伪全纯映射的模空间
- 批准号:
2203302 - 财政年份:2022
- 资助金额:
$ 6万 - 项目类别:
Continuing Grant
Student workshop in symplectic and contact geometry
辛几何和接触几何学生研讨会
- 批准号:
2002676 - 财政年份:2020
- 资助金额:
$ 6万 - 项目类别:
Continuing Grant
The Structure of the Gromov-Witten Invariants
Gromov-Witten 不变量的结构
- 批准号:
1905361 - 财政年份:2019
- 资助金额:
$ 6万 - 项目类别:
Continuing Grant
Graduate student workshop in symplectic and contact geometry
辛几何和接触几何研究生研讨会
- 批准号:
1722470 - 财政年份:2017
- 资助金额:
$ 6万 - 项目类别:
Standard Grant
Moduli Spaces Relative Singular Divisors and Lagrangians
模空间相对奇异因数和拉格朗日
- 批准号:
0905738 - 财政年份:2009
- 资助金额:
$ 6万 - 项目类别:
Standard Grant
Properties of Gromov-Witten Invariants
Gromov-Witten 不变量的性质
- 批准号:
0707164 - 财政年份:2006
- 资助金额:
$ 6万 - 项目类别:
Continuing Grant
Gromov Witten Invariants of Singular Spaces
奇异空间的 Gromov Witten 不变量
- 批准号:
0605003 - 财政年份:2006
- 资助金额:
$ 6万 - 项目类别:
Standard Grant
Properties of Gromov-Witten Invariants
Gromov-Witten 不变量的性质
- 批准号:
0306299 - 财政年份:2003
- 资助金额:
$ 6万 - 项目类别:
Continuing Grant
Recursive formulas for Gromov-Witten invariants
Gromov-Witten 不变量的递归公式
- 批准号:
0071393 - 财政年份:2000
- 资助金额:
$ 6万 - 项目类别:
Standard Grant
Gromov Invariants and Enumerative Invariants
格罗莫夫不变量和枚举不变量
- 批准号:
9996323 - 财政年份:1999
- 资助金额:
$ 6万 - 项目类别:
Standard Grant
相似国自然基金
指向提议者的共情关怀对第三方惩罚行为的影响:心理、脑与计算机制
- 批准号:32371102
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
经济博弈中提议者对先前第三方干预者的分配公平性研究
- 批准号:
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
基于深度层次特征相似性度量的视觉跟踪方法研究
- 批准号:61773397
- 批准年份:2017
- 资助金额:65.0 万元
- 项目类别:面上项目
构造类型专家系统及其开发工具的研究
- 批准号:68875006
- 批准年份:1988
- 资助金额:2.0 万元
- 项目类别:面上项目
相似海外基金
Conference: Supporting Mentoring in STEM Graduate Education: A Proposal for Virtual Workshops and Supporting Activities
会议:支持 STEM 研究生教育辅导:虚拟研讨会和支持活动的提案
- 批准号:
2413980 - 财政年份:2024
- 资助金额:
$ 6万 - 项目类别:
Standard Grant
CRCNS US-German Collaborative Research Proposal: Neural and computational mechanisms of flexible goal-directed decision making
CRCNS 美德合作研究提案:灵活目标导向决策的神经和计算机制
- 批准号:
2309022 - 财政年份:2024
- 资助金额:
$ 6万 - 项目类别:
Standard Grant
Collaborative Research: Time-Sharing Experiments for the Social Sciences (TESS): Proposal for Renewed Support, 2020-2023
合作研究:社会科学分时实验(TESS):2020-2023 年更新支持提案
- 批准号:
2424057 - 财政年份:2024
- 资助金额:
$ 6万 - 项目类别:
Continuing Grant
Proposal Title : NemeSys - Smart Multiphasic Nanoreactors Based On Tailored Foams for Direct H2O2 Synthesis
提案标题:NemeSys - 基于定制泡沫的智能多相纳米反应器,用于直接合成 H2O2
- 批准号:
EP/Y034392/1 - 财政年份:2024
- 资助金额:
$ 6万 - 项目类别:
Research Grant
Travel: Texas Power and Energy Conference (TPEC) 2024 Travel Proposal
旅行:德克萨斯州电力与能源会议 (TPEC) 2024 年旅行提案
- 批准号:
2341300 - 财政年份:2024
- 资助金额:
$ 6万 - 项目类别:
Standard Grant