Collaborative Research: On how the Bengal-Nicobar fan deposition influenced carbonate cementation in the incoming sediment to the Sumatra subduction zone (IODP Exp 362)
合作研究:孟加拉-尼科巴扇沉积如何影响苏门答腊俯冲带传入沉积物中的碳酸盐胶结作用(IODP Exp 362)
基本信息
- 批准号:1833269
- 负责人:
- 金额:$ 6.55万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-01 至 2020-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The precipitation of carbonate cements, like calcite, changes the physical and mechanical properties of sediments. Depending on the nature of the sediment and its location relative to zones of seismic activity, like subduction zones, carbonate cementation may decrease porosity and permeability and increase sedimentary section rigidity. It can also impact the slip on faults and earthquake rupture processes. Precipitation of carbonate during the alteration of sediments in subduction zones with burial and increasing temperature (i.e., diagenesis) can also provide an important sink for carbon, which may be released from rocks undergoing alteration deeper in the section or by devolatilization and other water-rock interaction processes. Thus, carbonate precipitation in subduction zone sediments can have a significant impact on the carbon cycle. This research examines the formation of carbonate cements in siliciclastic rocks in a major submarine fan deposit within the Sumatra subduction zone. Processes related to the alteration of siliciclastic sediments and their cementation by carbonate will be studied as will processes related to microbially-mediated carbon cycling. Research activities include petrographic investigation of mineral and textural relationships of sediment and cement grains using state-of-the-art imaging technologies. The geochemistry of samples, including stable isotope analyses of carbon, oxygen, and strontium and trace metal compositions of the sediments and their constituent materials will be carried out to try and identify signatures of different processes leading to the formation of carbonate cements. The study will also include work to characterize intergranular pore spaces and grain boundary relations, especially with regard to changes in porosity, permeability, and mineral dissolution features. Project goals include (1) determining the role of carbonate cements in porosity reduction and rock property evolution in subduction zone siliciclastic sediment packages; (2) evaluating the impact of carbonate cement precipitation on the carbon cycle; and (3) determining the thermal and chemical conditions that lead to carbonate cement formation in subduction zone sediments. Broader impacts of the work include student training and incorporation of research into courses. The investigators will work with organizations associated with their home institutions to attract members of groups underrepresented in the sciences and engage them in the research. The investigators will work with students and educators to develop materials to be used in secondary education settings. The project supports two investigators whose genders are underrepresented in the sciences, one of whom serves as a role model for minority students.Whereas we have a solid understanding of carbonate formation driven solely by carbon cycling, either recrystallization of biogenic carbonate or precipitation of methane-derived authigenic carbonate, another mechanism that may significantly influence the formation of sediment cements is where silicate mineral alteration during diagenesis produces bicarbonate and cations that favor precipitation of carbonate minerals. Diagenetic carbonate precipitation efficiently sequesters carbon. Because carbonate in sediments may be released during diagenesis from subducted rocks by devolatization and/or fluid-induced dissolution of calcium carbonate, knowledge of carbonate-carbon inventories in input sediment sequences to subduction zones is important to constrain the inputs to Earth's surface carbon reservoirs. Furthermore, the formation of diagenetic carbonate cements changes the physical and mechanical properties of the hosting sediment, altering its permeability and mechanical strength. The cementation process and the role of silicate weathering on authigenic carbonate formation in marine systems is not well understood. This work documents the relative roles of the coupled carbon-silica system in generating carbonate cements and depositing carbon-bearing minerals in cores of subduction-related siliciclastic sediments. Sediment samples from the Nicobar Fan from the Sumatra subduction zone were selected because they exhibit significant carbonate cementation, having been recently collected on an International Ocean Discovery Program (IODP) drilling expedition to the Indian Ocean. The research focuses on testing the hypothesis that Nicobar Fan carbonate cements formed at depth during burial and diagenesis due to the generation of alkalinity from the alteration of non-carbonate siliciclastic material. Research tasks include (1) comparing the relative roles of carbonate formation through traditional carbon cycling pathways with those via the proposed coupled silicate-carbonate system; (2) identifying chemical reactions in the sediments that lead to carbonate formation; and (3) understating conditions that promote carbonate precipitation from subsurface marine silicate alteration. Sediment samples will be examined petrographically and subjected to X-ray elemental mapping and cathodoluminescence imaging by field-emission scanning electron microscopy. Samples will also be analyzed geochemically. High-resolution carbon, oxygen and strontium isotopes and clumped stable isotope analyses will be carried out in addition to analyses of trace element composition. Data will be used to determine the role of subsurface marine silicates in carbonate cement formation and identify sediment fabric/porosity changes associated with it. Results will contribute to our understanding of the interdependence among fluid-rock reactions, element cycling, and porosity reduction in siliciclastic-dominated systems that experience methanogenesis and will improve our understanding of global carbon budgets, sediment rheology, and faulting in subduction zones.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
碳酸盐胶结物(如方解石)的沉淀会改变沉积物的物理和机械性质。根据沉积物的性质及其相对于地震活动区(如俯冲带)的位置,碳酸盐胶结作用可能会降低孔隙度和渗透率,并增加沉积部分的刚性。它还会影响断层的滑动和地震破裂过程。 在俯冲带中埋藏和温度升高(即成岩作用)的沉积物蚀变过程中碳酸盐的沉淀也可以提供重要的碳汇,碳可能从剖面深处发生蚀变的岩石中释放出来,或者通过脱挥发分和其他水岩作用释放出来。交互过程。 因此,俯冲带沉积物中的碳酸盐沉淀会对碳循环产生重大影响。 这项研究研究了苏门答腊俯冲带内一个主要海底扇沉积物中硅质碎屑岩中碳酸盐胶结物的形成情况。将研究与硅质碎屑沉积物的蚀变及其碳酸盐胶结相关的过程以及与微生物介导的碳循环相关的过程。 研究活动包括使用最先进的成像技术对沉积物和水泥颗粒的矿物和结构关系进行岩相研究。 将进行样品的地球化学分析,包括沉积物及其组成材料的碳、氧、锶和痕量金属成分的稳定同位素分析,以尝试识别导致碳酸盐胶结物形成的不同过程的特征。 该研究还将包括表征粒间孔隙空间和晶界关系的工作,特别是关于孔隙度、渗透率和矿物溶解特征的变化。项目目标包括(1)确定碳酸盐胶结物在俯冲带硅质碎屑沉积物包中孔隙度降低和岩石性质演化中的作用; (2)评价碳酸盐胶结物沉淀对碳循环的影响; (3)确定导致俯冲带沉积物中碳酸盐胶结物形成的热和化学条件。这项工作的更广泛影响包括学生培训和将研究纳入课程。 研究人员将与与其所在机构相关的组织合作,吸引科学领域代表性不足的群体成员,并让他们参与研究。研究人员将与学生和教育工作者合作开发用于中等教育环境的材料。 该项目支持两名性别在科学领域代表性不足的研究人员,其中一名是少数族裔学生的榜样。尽管我们对仅由碳循环驱动的碳酸盐形成有深入的了解,无论是生物碳酸盐的重结晶还是甲烷的沉淀 -衍生自生碳酸盐,可能显着影响沉积胶结物形成的另一种机制是成岩过程中硅酸盐矿物的蚀变产生碳酸氢盐和有利于碳酸盐矿物沉淀的阳离子。成岩碳酸盐沉淀有效地固碳。由于沉积物中的碳酸盐可能在成岩作用过程中通过碳酸钙的脱挥发分和/或流体诱导溶解而从俯冲岩石中释放出来,因此了解俯冲带输入沉积物序列中的碳酸盐-碳库存对于限制地球表面碳库的输入非常重要。此外,成岩碳酸盐胶结物的形成改变了沉积物的物理和机械性质,改变了其渗透性和机械强度。胶结过程和硅酸盐风化对海洋系统自生碳酸盐形成的作用尚不清楚。这项工作记录了耦合的碳-硅系统在生成碳酸盐胶结物和在俯冲相关硅质碎屑沉积物的核心沉积含碳矿物方面的相对作用。选择来自苏门答腊俯冲带尼科巴扇的沉积物样本是因为它们表现出显着的碳酸盐胶结作用,这些沉积物样本是最近在印度洋国际海洋发现计划 (IODP) 钻探探险中收集的。该研究的重点是检验以下假设:尼科巴扇碳酸盐胶结物是在埋藏和成岩作用过程中由于非碳酸盐硅质碎屑物质的蚀变产生碱度而在深处形成的。研究任务包括(1)比较通过传统碳循环途径与通过所提出的耦合硅酸盐-碳酸盐系统形成碳酸盐的相对作用; (2) 识别沉积物中导致碳酸盐形成的化学反应; (3) 低估了地下海洋硅酸盐蚀变促进碳酸盐沉淀的条件。 沉积物样品将进行岩相学检查,并通过场发射扫描电子显微镜进行 X 射线元素测绘和阴极发光成像。样品还将进行地球化学分析。除了微量元素成分分析外,还将进行高分辨率碳、氧和锶同位素以及团块稳定同位素分析。 数据将用于确定地下海洋硅酸盐在碳酸盐胶结物形成中的作用,并确定与之相关的沉积物结构/孔隙度变化。研究结果将有助于我们理解经历甲烷生成的硅质碎屑为主的系统中流体-岩石反应、元素循环和孔隙度降低之间的相互依赖性,并将提高我们对全球碳预算、沉积物流变学和俯冲带断层的理解。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kitty Milliken其他文献
Kitty Milliken的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kitty Milliken', 18)}}的其他基金
Design, Construction, and Evaluation of a Multi-author Interative Tutorial for Carbonate Petrology
碳酸盐岩石学多作者互动教程的设计、构建和评估
- 批准号:
0536085 - 财政年份:2006
- 资助金额:
$ 6.55万 - 项目类别:
Standard Grant
Digital Tutorial for Sandstone Petrography
砂岩岩相学数字教程
- 批准号:
0230578 - 财政年份:2003
- 资助金额:
$ 6.55万 - 项目类别:
Continuing Grant
Digital Image Technology in Undergraduate Petrology Laboratories: A "Proof of Concept" Project in Siliciclastic Petrography
本科生岩石学实验室中的数字图像技术:硅质碎屑岩相学的“概念验证”项目
- 批准号:
0088763 - 财政年份:2001
- 资助金额:
$ 6.55万 - 项目类别:
Standard Grant
相似国自然基金
汇率制度弹性如何影响宏观经济韧性:理论、实证和政策研究
- 批准号:72303027
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
大宗商品如何影响企业资产定价:路径、机制及对策研究
- 批准号:72303171
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
如何应对日趋严重的职场物化?基于员工、组织和数智技术的干预措施研究
- 批准号:72372012
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
如何利用C-14更精确地测海洋光合速率:影响因素和机制研究
- 批准号:42376203
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
如何应对智能时代职业可替代风险?职业敏捷力视角下的适应性应对机制与干预研究
- 批准号:72302090
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: EAGER: The next crisis for coral reefs is how to study vanishing coral species; AUVs equipped with AI may be the only tool for the job
合作研究:EAGER:珊瑚礁的下一个危机是如何研究正在消失的珊瑚物种;
- 批准号:
2333604 - 财政年份:2024
- 资助金额:
$ 6.55万 - 项目类别:
Standard Grant
Collaborative Research: How do plants control sperm nuclear migration for successful fertilization?
合作研究:植物如何控制精子核迁移以成功受精?
- 批准号:
2334517 - 财政年份:2024
- 资助金额:
$ 6.55万 - 项目类别:
Standard Grant
Collaborative Research: NSF-BSF: How cell adhesion molecules control neuronal circuit wiring: Binding affinities, binding availability and sub-cellular localization
合作研究:NSF-BSF:细胞粘附分子如何控制神经元电路布线:结合亲和力、结合可用性和亚细胞定位
- 批准号:
2321481 - 财政年份:2024
- 资助金额:
$ 6.55万 - 项目类别:
Continuing Grant
Collaborative Research: NSF-BSF: How cell adhesion molecules control neuronal circuit wiring: Binding affinities, binding availability and sub-cellular localization
合作研究:NSF-BSF:细胞粘附分子如何控制神经元电路布线:结合亲和力、结合可用性和亚细胞定位
- 批准号:
2321480 - 财政年份:2024
- 资助金额:
$ 6.55万 - 项目类别:
Continuing Grant
Collaborative Research: EAGER: The next crisis for coral reefs is how to study vanishing coral species; AUVs equipped with AI may be the only tool for the job
合作研究:EAGER:珊瑚礁的下一个危机是如何研究正在消失的珊瑚物种;
- 批准号:
2333603 - 财政年份:2024
- 资助金额:
$ 6.55万 - 项目类别:
Standard Grant