MRI: Acquisition of an HPC System for Data-Driven Discovery in Computational Astrophysics, Biology, Chemistry, and Materials Science

MRI:获取 HPC 系统,用于计算天体物理学、生物学、化学和材料科学中的数据驱动发现

基本信息

  • 批准号:
    1828187
  • 负责人:
  • 金额:
    $ 369.93万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-10-01 至 2022-09-30
  • 项目状态:
    已结题

项目摘要

The project funds the purchase of a high-performance computing and storage system at the Georgia Institute of Technology. This computing instrument will support data-driven research in astrophysics, biosciences, computational chemistry, materials and manufacturing, and computational science. These projects contribute to national initiatives in big data, strategic computing, materials genome, and manufacturing partnership; and NSF supported observatories such as the gravitational wave observatory and the South Pole neutrino observatory. The system also serves as a springboard for developments of codes, software prototyping, and scalability studies prior to using national supercomputers. Advances made in computational methods and scientific software are disseminated in the form of open-source codes and data analysis portals. Over 33 faculty, 54 research scientists/postdocs, 195 graduate students, and 56 undergraduate students will immediately benefit from the instrument. In addition, the system provides training opportunity at all levels from undergraduate students to early career researchers, in important interdisciplinary areas of national need. A fifth of the system capacity is utilized to enable research activities of regional partners, researchers from minority serving institutions, and other users nationally through XSEDE participation. The project involves undergraduate student participation from historically black colleges from Atlanta metropolitan area. Public outreach efforts are planned through videos of public interest and local events such as the Atlanta Science Festival.The cluster will combine regular compute nodes with others configured to emphasize one of the following: big memory, big local storage, solid state storage, Graphics Processing Units (GPU), and ARM processors. In doing so, the system can be employed by a diversity of projects. In astrophysics, the instrument bolsters data-driven research including detection of gravitational waves, astrophysical neutrinos, and gamma rays. It does it by leveraging data from leading astroparticle observatories and contributing to their mission. It also leads to improved insights into formation of supermassive black holes and large-scale structure of the universe. The computing system also aids the development of parallel software in computational genomics, systems biology, and health analytics. Important applications in assembly and network analysis of plant genomes, and environmental metagenomics are pursued. The instrument also enables next generation algorithms and software for computational chemistry and expands the boundaries of molecular simulation. The system enables advances in density function theory, enhances studies of crystal defects and nanostructures, and injects novel use of machine learning techniques in computational chemistry. It also fosters the development of data science methodologies to identify building blocks of materials at multiple scales, thus significantly reducing the development and deployments cycles for new materials.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目资助佐治亚理工学院购买高性能计算和存储系统。该计算仪器将支持天体物理学、生物科学、计算化学、材料和制造以及计算科学领域的数据驱动研究。这些项目为大数据、战略计算、材料基因组和制造伙伴关系方面的国家举措做出了贡献;美国国家科学基金会支持引力波天文台和南极中微子天文台等天文台。该系统还可以作为使用国家超级计算机之前代码开发、软件原型设计和可扩展性研究的跳板。计算方法和科学软件方面取得的进步以开源代码和数据分析门户的形式传播。超过 33 名教员、54 名研究科学家/博士后、195 名研究生和 56 名本科生将立即从该仪器中受益。此外,该系统还在国家需要的重要跨学科领域提供从本科生到早期职业研究人员的各个级别的培训机会。系统容量的五分之一用于支持区域合作伙伴、少数族裔服务机构的研究人员以及通过 XSEDE 参与的全国其他用户的研究活动。该项目涉及来自亚特兰大都会区历史悠久的黑人大学的本科生的参与。通过公众感兴趣的视频和亚特兰大科学节等当地活动来规划公共宣传工作。该集群将常规计算节点与其他配置节点结合起来,以强调以下之一:大内存、大本地存储、固态存储、图形处理单元 (GPU) 和 ARM 处理器。这样,该系统就可以被多种项目所采用。在天体物理学中,该仪器支持数据驱动的研究,包括引力波、天体物理中微子和伽马射线的探测。它通过利用领先天体粒子观测站的数据并为其任务做出贡献来实现这一目标。它还可以提高人们对超大质量黑洞形成和宇宙大尺度结构的认识。该计算系统还有助于计算基因组学、系统生物学和健康分析领域并行软件的开发。寻求在植物基因组组装和网络分析以及环境宏基因组学中的重要应用。该仪器还支持下一代计算化学算法和软件,并扩展了分子模拟的边界。该系统推动了密度函数理论的进步,增强了对晶体缺陷和纳米结构的研究,并在计算化学中注入了机器学习技术的新用途。它还促进了数据科学方法的发展,以识别多种尺度的材料构建模块,从而显着缩短新材料的开发和部署周期。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力评估进行评估,被认为值得支持。优点和更广泛的影响审查标准。

项目成果

期刊论文数量(63)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Parallel construction of module networks
模块网络的并行构建
  • DOI:
    10.1145/3458817.3476207
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Srivastava, Ankit;Chockalingam, Sriram P.;Aluru, Maneesha;Aluru, Srinivas
  • 通讯作者:
    Aluru, Srinivas
Halo Environment for Population III Star Formation
III族恒星形成的光环环境
  • DOI:
    10.3847/2515-5172/ab9e78
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Grace, Justin;O’Shea, Brian W.;Wise, John H.
  • 通讯作者:
    Wise, John H.
Decoding defect statistics from diffractograms via machine learning
  • DOI:
    10.1038/s41524-021-00539-z
  • 发表时间:
    2021-05-17
  • 期刊:
  • 影响因子:
    9.7
  • 作者:
    Kunka, Cody;Shanker, Apaar;Dingreville, Remi
  • 通讯作者:
    Dingreville, Remi
Cartesian message passing neural networks for directional properties: Fast and transferable atomic multipoles
  • DOI:
    10.1063/5.0050444
  • 发表时间:
    2021-06-14
  • 期刊:
  • 影响因子:
    4.4
  • 作者:
    Glick, Zachary L.;Koutsoukas, Alexios;Sherrill, C. David
  • 通讯作者:
    Sherrill, C. David
Mechanism of action of HBV capsid assembly modulators predicted from binding to early assembly intermediates
通过与早期组装中间体的结合预测 HBV 衣壳组装调节剂的作用机制
  • DOI:
    10.1101/2020.03.23.002527
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Pavlova, Anna;Bassit, Leda;Cox, Bryan;Korablyov, Maksym;Chipot, Chris;Verma, Kiran;Russell, Olivia;Schinazi, Raymond;Gumbart, James C
  • 通讯作者:
    Gumbart, James C
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Srinivas Aluru其他文献

A Parallel Monte Carlo Algorithm for Protein Accessible Surface Area Computation
蛋白质可及表面积计算的并行蒙特卡罗算法
  • DOI:
    10.1007/978-3-540-46642-0_49
  • 发表时间:
    1999
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Srinivas Aluru;D. Ranjan;N. Futamura
  • 通讯作者:
    N. Futamura

Srinivas Aluru的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Srinivas Aluru', 18)}}的其他基金

A scalable integrated multi-modal single cell analysis framework for gene regulatory and cell-cell interaction networks
用于基因调控和细胞间相互作用网络的可扩展集成多模式单细胞分析框架
  • 批准号:
    2233887
  • 财政年份:
    2023
  • 资助金额:
    $ 369.93万
  • 项目类别:
    Continuing Grant
BD Hubs: Collaborative Proposal: SOUTH:The South Big Data Innovation Hub
BD Hubs:合作提案:SOUTH:南方大数据创新中心
  • 批准号:
    1916589
  • 财政年份:
    2019
  • 资助金额:
    $ 369.93万
  • 项目类别:
    Cooperative Agreement
AF: Small: Algorithmic Techniques for High-throughput Analysis of Long Reads
AF:小:长读长高通量分析的算法技术
  • 批准号:
    1816027
  • 财政年份:
    2018
  • 资助金额:
    $ 369.93万
  • 项目类别:
    Standard Grant
EAGER: A Framework for Learning Graph Algorithms with Applications to Social and Gene Networks
EAGER:学习图算法及其在社交和基因网络中的应用的框架
  • 批准号:
    1841351
  • 财政年份:
    2018
  • 资助金额:
    $ 369.93万
  • 项目类别:
    Standard Grant
Big Data Regional Innovation Hubs and Spokes Workshop
大数据区域创新中心和辐射研讨会
  • 批准号:
    1736154
  • 财政年份:
    2017
  • 资助金额:
    $ 369.93万
  • 项目类别:
    Standard Grant
SHF:Small: Reproducibility and Comprehensive Assessment of Next Generation Sequencing Bioinformatics Software
SHF:Small:下一代测序生物信息学软件的重现性和综合评估
  • 批准号:
    1718479
  • 财政年份:
    2017
  • 资助金额:
    $ 369.93万
  • 项目类别:
    Standard Grant
AF: Medium: Collaborative Research: Sequential and Parallel Algorithms for Approximate Sequence Matching with Applications to Computational Biology
AF:媒介:协作研究:近似序列匹配的顺序和并行算法及其在计算生物学中的应用
  • 批准号:
    1704552
  • 财政年份:
    2017
  • 资助金额:
    $ 369.93万
  • 项目类别:
    Standard Grant
BD Hubs: Collaborative Proposal: SOUTH: A Big Data Innovation Hub for the South Region
BD 中心:合作提案:SOUTH:南部地区的大数据创新中心
  • 批准号:
    1550305
  • 财政年份:
    2015
  • 资助金额:
    $ 369.93万
  • 项目类别:
    Standard Grant
EAGER: Exploratory Research on the Micron Automata Processor
EAGER:微米自动机处理器的探索性研究
  • 批准号:
    1448333
  • 财政年份:
    2014
  • 资助金额:
    $ 369.93万
  • 项目类别:
    Standard Grant
Collaborative Research: ABI Innovation: Towards high-performance flexible transcription factor-DNA docking
合作研究:ABI 创新:迈向高性能灵活的转录因子-DNA 对接
  • 批准号:
    1356065
  • 财政年份:
    2014
  • 资助金额:
    $ 369.93万
  • 项目类别:
    Continuing Grant

相似国自然基金

氨基酸转运体SLC7A5诱导食管癌免疫治疗获得性耐药的机制研究
  • 批准号:
    82373410
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
脚手架蛋白RanBP9通过调控细胞周期停滞和获得SASP介导应激性衰老促进AKI向CKD转化的作用及机制
  • 批准号:
    82300777
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
Galectin-9促进非小细胞肺癌奥希替尼获得性耐药及免疫逃逸的作用和机制研究
  • 批准号:
    82373361
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
靶向谷氨酰胺转运体ASCT2逆转食管鳞癌对CDK4/6抑制剂获得性耐药分子机制研究
  • 批准号:
    82373360
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
FOXK2-KCNJ2轴在阿帕替尼获得性耐药的甲状腺未分化癌中重塑细胞焦亡微环境的机制研究
  • 批准号:
    82303864
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Equipment: MRI: Track 2 Acquisition of a HPC Cluster for Fostering Interdisciplinary Collaboration on AI-driven and Data-intensive Research and Education in West Tennessee
设备: MRI:第二轨道收购 HPC 集群,以促进田纳西州西部人工智能驱动和数据密集型研究和教育的跨学科合作
  • 批准号:
    2318210
  • 财政年份:
    2023
  • 资助金额:
    $ 369.93万
  • 项目类别:
    Standard Grant
MRI: Track 1 Acquisition of an HPC Cluster for Artificial Intelligence, Machine Learning, Scientific Computing, and Interdisciplinary Research
MRI:第一轨道收购用于人工智能、机器学习、科学计算和跨学科研究的 HPC 集群
  • 批准号:
    2320735
  • 财政年份:
    2023
  • 资助金额:
    $ 369.93万
  • 项目类别:
    Standard Grant
Research Infrastructure: MRI: Acquisition of a Big Data HPC Cluster for Interdisciplinary Research and Training
研究基础设施:MRI:收购大数据 HPC 集群以进行跨学科研究和培训
  • 批准号:
    2215705
  • 财政年份:
    2022
  • 资助金额:
    $ 369.93万
  • 项目类别:
    Standard Grant
MRI: Acquisition of a high-performance computer (HPC)
MRI:购买高性能计算机 (HPC)
  • 批准号:
    1919554
  • 财政年份:
    2019
  • 资助金额:
    $ 369.93万
  • 项目类别:
    Standard Grant
MRI: Acquisition of a HPC System: Computing for Sustainability
MRI:购买 HPC 系统:可持续发展计算
  • 批准号:
    1726447
  • 财政年份:
    2017
  • 资助金额:
    $ 369.93万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了