Acoustoelectric Amplification in Composite Piezoelectric-Silicon Cavities: A Circuit-Less Amplification Paradigm for RF Signal Processing and Wireless Sensing

复合压电硅腔中的声电放大:用于射频信号处理和无线传感的无电路放大范例

基本信息

项目摘要

This project aims to introduce a new family of electro-acoustic devices that utilize the coupling between the electrons and phonons in a semiconducting substrate to amplify bulk acoustic waves in a micro-scale piezoelectric-on-silicon acoustic cavity/resonator. Acoustic resonators are used in a wide variety of applications including wireless transceivers and miniaturized sensors, and their significance in facilitating technological innovation is only going to grow for the foreseeable future. For many decades, surface acoustic wave (SAW) devices fabricated on piezoelectric substrates and quartz-based resonators dominated this field. During the past decade, bulk acoustic wave (BAW) devices fabricated based on sputtered thin-film Aluminum Nitride have changed the landscape by extending the application of acoustic devices to higher frequency bands at smaller footprint and lower manufacturing cost. This proposal, if successful, will have a sizable impact on further extending the application of BAW resonators in new fields as the proposed acoustoelectric amplification will offer unmatched overall system-level reduction in cost, size, and power consumption while offering improved overall performance. The principal investigator (PI) has a track record of promoting diversity, particularly through supporting female students to engage in research and working with university-wide programs that are dedicated to promoting research experience for minorities. He is also a co-PI on an NSF-supported research experience for teachers (RET) site. The resources available through this project will directly impact the PI's involvement in all such activities by providing new research/teaching opportunities.The objective of this project is to demonstrate that bulk-mode resonant cavities made of thin composite piezoelectric-silicon substrates such as lithium-niobate (LN)-on-silicon can be a breeding ground for a flurry of devices in which bulk acoustic waves are amplified through application of a DC current, eliminating the need for large actuation areas to achieve low signal loss. The models and preliminary results predict that 50 dB of signal gain is achievable in a 0.2-mm-long LN-on-silicon cavity at GHz frequency range. The magnitude of the achievable gain is limited to the coupling efficiency of the piezoelectric material and the electron mobility in the semiconductor (i.e., silicon) which could be independently optimized in the proposed composite structure. To study this novel concept and explore the performance limit, the following specific tasks are planned: 1) The underlying theory of acoustoelectric amplification in composite structures will be studied in detail, and the design guidelines for optimized gain and power efficiency will be developed. 2) Devices will be designed and fabricated for two specific applications; first, circuit-less oscillators at GHz frequency in which the acoustoelectric amplification compensates for the total acoustic cavity loss in order to achieve sustained spontaneous oscillation; and second, bulk-mode monolithic filters with near-zero insertion loss. 3) Application of circuit-less signal amplification will also be explored in passive wireless piezoelectric resonant sensors to improve their limited resolution and range. The circuit-less signal amplification, if successfully demonstrated, will advance the development of filters to achieve comparable signal-to-noise ratios with much smaller size than existing BAW/SAW filters used in wireless transceivers today.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目旨在推出一系列新的电声器件,利用半导体基板中电子和声子之间的耦合来放大微型硅基压电声腔/谐振器中的体声波。 声学谐振器广泛应用于无线收发器和小型传感器等领域,在可预见的未来,它们在促进技术创新方面的重要性只会越来越大。几十年来,在压电基板和石英谐振器上制造的表面声波(SAW)器件主导了该领域。在过去的十年中,基于溅射薄膜氮化铝制造的体声波(BAW)器件改变了格局,以更小的占地面积和更低的制造成本将声学器件的应用扩展到更高的频段。该提案如果成功,将对进一步扩展体声波谐振器在新领域的应用产生相当大的影响,因为所提出的声电放大将在成本、尺寸和功耗方面提供无与伦比的整体系统级降低,同时提高整体性能。首席研究员(PI)在促进多样性方面有着良好的记录,特别是通过支持女学生参与研究以及与致力于促进少数族裔研究经验的大学范围内的项目合作。他还是 NSF 支持的教师研究体验 (RET) 网站的联合 PI。通过该项目获得的资源将通过提供新的研究/教学机会,直接影响 PI 参与所有此类活动。该项目的目标是证明由薄复合压电硅基板(例如锂)制成的体模谐振腔硅基铌酸盐(LN)可以成为一系列器件的滋生地,在这些器件中,通过施加直流电流来放大体声波,从而无需大驱动区域即可实现低信号损失。模型和初步结果预测,在 0.2 毫米长的硅基 LN 腔中,在 GHz 频率范围内可实现 50 dB 的信号增益。可实现的增益大小受限于压电材料的耦合效率和半导体(即硅)中的电子迁移率,这可以在所提出的复合结构中独立优化。为了研究这一新颖概念并探索性能极限,计划完成以下具体任务:1)详细研究复合结构中声电放大的基础理论,并制定优化增益和功率效率的设计指南。 2) 设备将针对两种特定应用进行设计和制造;首先,GHz频率的无电路振荡器,其中声电放大补偿总声腔损耗,以实现持续的自发振荡;其次,具有接近零插入损耗的体模式单片滤波器。 3)还将探索无电路信号放大在无源无线压电谐振传感器中的应用,以提高其有限的分辨率和范围。如果成功演示,无电路信号放大将推动滤波器的开发,以比当今无线收发器中使用的现有 BAW/SAW 滤波器小得多的尺寸实现可比的信噪比。该奖项反映了 NSF 的法定使命,并具有通过使用基金会的智力优点和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Ultra-Wideband Non-Reciprocal Micro-Acoustic Delay Lines with Slanted-Finger Interdigital Transducers
具有斜指叉指换能器的超宽带非互易微声学延迟线
  • DOI:
    10.1109/mems51670.2022.9699654
  • 发表时间:
    2022-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mansoorzare, Hakhamanesh;Abdolvand, Reza
  • 通讯作者:
    Abdolvand, Reza
Acoustoelectric Amplification in Lateral-Extensional Composite Piezo-Silicon Resonant Cavities
横向延伸复合压电硅谐振腔中的声电放大
A Thin-Film Piezo-Silicon Acoustoelectric Isolator with More than 30 dB Non-Reciprocal Transmission
不可逆传输超过 30 dB 的薄膜压电硅声电隔离器
Trapped Charge Effect on Composite Lithium Niobate-Silicon Acoustoelectric Delay Lines
铌酸锂-硅复合声电延迟线的俘获电荷效应
Non-Reciprocal Lithium Niobate-on-Silicon Acoustoelectric Delay Lines
非互易硅基铌酸锂声电延迟线
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Reza Abdolvand其他文献

Fracture limit in thin-film piezoelectric-on-substrate resonators: Silicon VS. diamond
薄膜压电基片谐振器的断裂极限:硅 VS。
TEMPERATURE-STABLE THIN-FILM LITHIUM TANTALITE-ON-SILICON RESONATORS
温度稳定的薄膜硅基钽铁矿锂谐振器
Piezoelectric Micromachined Ultrasonic Transducer Integrated With Field Effect Transistor for Acoustic Sensing
与场效应晶体管集成的压电微机械超声波换能器,用于声学传感
Passive In-Band RF Power Sensing in Thin-Film Lithium Niobate on Silicon Platform
硅平台上薄膜铌酸锂的无源带内射频功率传感
Through-support-coupled micromechanical filter array
贯通支撑耦合微机械滤波器阵列

Reza Abdolvand的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Reza Abdolvand', 18)}}的其他基金

PFI-TT: Acousto-Electric Semiconductor Amplifiers to Expand Wireless Connectivity to a Larger Population of End-Users
PFI-TT:声电半导体放大器将无线连接扩展到更多的最终用户
  • 批准号:
    2122670
  • 财政年份:
    2021
  • 资助金额:
    $ 32万
  • 项目类别:
    Standard Grant
Integrating High Frequency Whispering-Gallery-Mode Phononic Cavities with Efficient Electrically-Small Antennas: Pushing the Limits of Wireless Passive Micro-Sensing
将高频耳语廊模式声子腔与高效电小天线集成:突破无线无源微传感的极限
  • 批准号:
    1711632
  • 财政年份:
    2017
  • 资助金额:
    $ 32万
  • 项目类别:
    Standard Grant
GOALI: Lateral-Mode MEMS Filter Arrays on Ultrananocrystalline Diamond for Multi-Band Communication
GOALI:用于多频段通信的超纳米晶金刚石横向模式 MEMS 滤波器阵列
  • 批准号:
    1440163
  • 财政年份:
    2014
  • 资助金额:
    $ 32万
  • 项目类别:
    Standard Grant
EAGER: Investigation and Optimization of Thermoelectric Properties of Highly-Doped Polysilicon Nanowires
EAGER:高掺杂多晶硅纳米线热电性能的研究和优化
  • 批准号:
    1418704
  • 财政年份:
    2014
  • 资助金额:
    $ 32万
  • 项目类别:
    Standard Grant
EAGER: Investigation and Optimization of Thermoelectric Properties of Highly-Doped Polysilicon Nanowires
EAGER:高掺杂多晶硅纳米线热电性能的研究和优化
  • 批准号:
    1355488
  • 财政年份:
    2013
  • 资助金额:
    $ 32万
  • 项目类别:
    Standard Grant
GOALI: Lateral-Mode MEMS Filter Arrays on Ultrananocrystalline Diamond for Multi-Band Communication
GOALI:用于多频段通信的超纳米晶金刚石横向模式 MEMS 滤波器阵列
  • 批准号:
    1202523
  • 财政年份:
    2012
  • 资助金额:
    $ 32万
  • 项目类别:
    Standard Grant

相似国自然基金

基于太赫兹行波管放大器的高效率多路功率合成技术的研究
  • 批准号:
    62371102
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
具有多电流合成结点的新型功率放大器架构及智能设计技术研究
  • 批准号:
    62371077
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
气柱分隔微流体强化浆态合成过程及其流动相似放大方法的研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
基于生物正交反应的级联放大系统的设计合成及其在微量病原体检测中的应用
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
战略合成子的可放大合成及在药物合成中的应用
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    63 万元
  • 项目类别:
    面上项目

相似海外基金

Supercritical hydrothermal synthesis of High-entropy nanoceramics
高熵纳米陶瓷的超临界水热合成
  • 批准号:
    21H05010
  • 财政年份:
    2021
  • 资助金额:
    $ 32万
  • 项目类别:
    Grant-in-Aid for Scientific Research (S)
Dynamic Chiral Macromolecular Catalyst for Asymmetric Amplification
用于不对称扩增的动态手性高分子催化剂
  • 批准号:
    20H05674
  • 财政年份:
    2020
  • 资助金额:
    $ 32万
  • 项目类别:
    Grant-in-Aid for Scientific Research (S)
Amplification of function in supramolecular/polymer composite gels and its application to highly sensitive sensors
超分子/聚合物复合凝胶的功能放大及其在高灵敏度传感器中的应用
  • 批准号:
    17K05848
  • 财政年份:
    2017
  • 资助金额:
    $ 32万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Spontaneous formation, amplification and multiplication of enantioenriched aminonitriles by using circularly polarized light and quartz as origins of chirality
使用圆偏振光和石英作为手性起源自发形成、放大和倍增对映体富集的氨基腈
  • 批准号:
    16K05692
  • 财政年份:
    2016
  • 资助金额:
    $ 32万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Control of Generation and Amplification of Chirality
控制手性的产生和放大
  • 批准号:
    16H04144
  • 财政年份:
    2016
  • 资助金额:
    $ 32万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了