Experimental and Theoretical Study of Femtosecond Microscale 3D Light Field Projection and Its Application in Multiphoton 3D Light Field Lithography

飞秒微尺度3D光场投影实验与理论研究及其在多光子3D光场光刻中的应用

基本信息

  • 批准号:
    1826078
  • 负责人:
  • 金额:
    $ 38.63万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-09-01 至 2023-02-28
  • 项目状态:
    已结题

项目摘要

Meta materials are periodic materials that allow microstructure design and are able to provide unique optical, physical, chemical and bio properties that do not exist in natural materials. The meta-materials considered in this project are 3D, where their geometry is described in three dimensions, or 2.5D, where the geometry is defined in a plane, but the plane can stack to make a 3D structure. There is a great desire to have a microfabrication technique that can provide high speed, high resolution fabrication of these structures over large areas. Existing fabrication techniques can provide either sufficiently high resolution to fabricate the 2.5D/3D features, or sufficiently high throughput to cover large areas, but not both simultaneously. An advanced manufacturing process capable of both is critical for the commercialization of the meta-structures. This award will support research on using femtosecond laser enabled 3D virtual object projections into a photoresist (a polymeric material that experiences property changes when exposed to light) as a method to achieve high speed, high resolution fabrication. This is potentially feasible as a femtosecond laser, which can realize over 10,000 focal spots in one 3D light field projection, can enable higher speed processing. Knowledge gaps regarding the complex, non-linear interactions between the 3D projections and the photoresist will be addressed using computational and experimental approaches. If successful bio-sensing/inspection and emission/absorption controlled surfaces may be realized and contribute to U.S. defense and health related interests. The award will also facilitate training of the future workforce as students across all levels will gain exposure to, and experience in 2D and 3D micro fabrication technologies. Additional educational outreach activities include engaging high school teachers in the research, and disseminating the findings through research websites, conference participations and journal publications. The technical objective of this research is to establish a new 3D lithography method based on femtosecond compressed 3D light field projection. If successful it will realize the high-speed (compared with single-spot multiphoton lithography), high-resolution (equal or better than half of the wavelength) fabrication of complicated 2.5D/3D microstructures over a large area. The technical scope of this research includes; 1) a hybrid wave analysis approach combining general astigmatic Gaussian beam tracing and full wave simulation to enable high accuracy wave type analysis of light focusing in large optical systems using minimum computational power, 2) determination of stress/strain fields and the associated deformation of cured photoresist from multiphoton 3D light field lithography, 3) specification and fabrication of a femtosecond compressed 3D light field projector test bed to verify the theoretically predicted size and shape of cured photoresist patterns from femtosecond voxel projections. This proposed research will significantly advance the fundamental understanding in the following areas; non-linear femtosecond light transport/focusing/absorption in photoresists; 3D virtual object reconstructions with femtosecond pulsed light; and the feasibility of femtosecond 3D light field projection in 3D microfabrication of each type of 2.5D/3D microstructures over a large area.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
元材料是允许微观结构设计的周期材料,并且能够提供自然材料中不存在的独特光学,物理,化学和生物性能。该项目中考虑的元材料是3D,其中它们的几何形状以三个维度或2.5D描述,其中几何形状是在平面中定义的,但是平面可以堆叠以制造3D结构。有一个非常渴望拥有一种微加工技术,可以在大面积上为这些结构提供高速,高分辨率的制造。现有的制造技术可以提供足够高的分辨率来制造2.5D/3D功能,或者足够高的吞吐量以覆盖大面积,但并不能同时覆盖。能够两者都有两者的先进制造过程对于元结构的商业化至关重要。该奖项将支持有关使用飞秒激光启用3D虚拟对象投影的研究(一种在暴露于光线时经历属性变化的聚合物材料)作为实现高速,高分辨率制造的方法。这可能是一秒钟激光器,可以实现一个3D光场投影中的10,000多个焦点,可以实现更高的速度处理。关于3D投影与光构师之间复杂的非线性相互作用的知识差距将使用计算和实验方法来解决。如果成功的生物感应/检查和排放/吸收控制的表面可能会实现,并有助于美国国防和与健康有关的利益。该奖项还将促进对未来劳动力的培训,因为各个级别的学生将获得2D和3D微型制造技术的经验。其他教育外展活动包括让高中教师参与研究,并通过研究网站,会议参与和期刊出版物传播研究结果。 这项研究的技术目标是建立一种基于飞秒压缩3D光场投影的新3D光刻方法。如果成功的话,它将实现高速(与单点多光谱光刻相比),高分辨率(等于或优于波长的一半)在大面积上制造复杂的2.5D/3D微结构。这项研究的技术范围包括: 1)一种混合波分析方法,结合了一般的散光高斯束跟踪和全波模拟,以实现高精度的波动类型,使用最小的计算能力在大型光学系统中进行光聚焦的高精度分析,2)确定应力/应变场的确定和应变场的相关变形和相关的变形,从从飞秒体素投影中的理论上预测的固化光晶剂图案的大小和形状。这项拟议的研究将大大提高以下领域的基本理解。光孔师中的非线性飞秒光传输/聚焦/吸收; 3D虚拟对象重建具有飞秒脉冲光;以及巨头3D光场预测在大面积上的每种2.5D/3D微结构的3D微结构中的可行性。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子优点和更广泛的审查标准通过评估来通过评估来支持的。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Femtosecond 3D photolithography through a digital micromirror device and a microlens array
通过数字微镜器件和微透镜阵列进行飞秒 3D 光刻
  • DOI:
    10.1364/ao.457847
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    1.9
  • 作者:
    Jakkinapalli, Aravind;Baskar, Balaji;Wen, Sy-Bor
  • 通讯作者:
    Wen, Sy-Bor
Microlens array based three-dimensional light field projection and possible applications in photolithography
基于微透镜阵列的三维光场投影及其在光刻中的可能应用
  • DOI:
    10.1117/12.2536951
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhang, Hongjie;Wen, Sy-Bor
  • 通讯作者:
    Wen, Sy-Bor
Femtosecond Two-Photon 3D Lightfield Lithography
飞秒双光子 3D 光场光刻
  • DOI:
    10.1115/ht2021-62290
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Aravind Jakkinapalli, Balaji Baskar
  • 通讯作者:
    Aravind Jakkinapalli, Balaji Baskar
Improved Femtosecond 3D Light Field Lithography With a Phase-Controlled Spatial Light Modulator
使用相控空间光调制器改进飞秒 3D 光场光刻
  • DOI:
    10.1115/ht2022-85681
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jakkinapalli, Aravind;Wen, Sy-Bor
  • 通讯作者:
    Wen, Sy-Bor
Femtosecond 3D Light Field Projection and the Associate 3D Photolithography
飞秒 3D 光场投影和相关 3D 光刻
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhang, Hongjie;Wen, Sy-Bor
  • 通讯作者:
    Wen, Sy-Bor
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sy-Bor Wen其他文献

Metal particles produced by laser ablation for ICP–MS measurements
  • DOI:
    10.1016/j.talanta.2007.04.029
  • 发表时间:
    2007-09-30
  • 期刊:
  • 影响因子:
  • 作者:
    Jhanis J. Gonzalez;Chunyi Liu;Sy-Bor Wen;Xianglei Mao;Richard E. Russo
  • 通讯作者:
    Richard E. Russo
Direct Numerical Simulation of Near Field Thermal Radiation Based on Wiener Chaos Expansion of Thermal Fluctuating Current

Sy-Bor Wen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sy-Bor Wen', 18)}}的其他基金

Enhanced radiative energy tunneling with dielectric optical resonators and its usage in harvesting thermal energy inside a solid
使用介电光学谐振器增强辐射能量隧道及其在固体内部收集热能中的用途
  • 批准号:
    2117953
  • 财政年份:
    2022
  • 资助金额:
    $ 38.63万
  • 项目类别:
    Standard Grant
EAGER: Laser 4D light field thermoreflectance (TR) imaging for non-intrusive high accuracy temperature measurement of 3D targets with high spatial and high temporal resolutions
EAGER:激光 4D 光场热反射 (TR) 成像,可对具有高空间和高时间分辨率的 3D 目标进行非侵入式高精度温度测量
  • 批准号:
    1545546
  • 财政年份:
    2015
  • 资助金额:
    $ 38.63万
  • 项目类别:
    Standard Grant
CAREER: Experimental and Theoretical Analysis for Optical Induced Thermal Energy Transport in Nano-Optical Systems with Pulsed Light Sources
职业:脉冲光源纳米光学系统中光诱导热能传输的实验和理论分析
  • 批准号:
    0845794
  • 财政年份:
    2009
  • 资助金额:
    $ 38.63万
  • 项目类别:
    Standard Grant

相似国自然基金

机器学习与量子多体物理交叉的理论与实验研究
  • 批准号:
    12375060
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
基于深度学习的非线性有源噪声控制理论及实验研究
  • 批准号:
    12204345
  • 批准年份:
    2022
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
基于深度学习的非线性有源噪声控制理论及实验研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
异质群体的社会学习:实验与理论
  • 批准号:
    72173076
  • 批准年份:
    2021
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
弹性可重构的光通信灵巧子系统中信号处理关键理论与实验研究
  • 批准号:
    61705016
  • 批准年份:
    2017
  • 资助金额:
    29.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Nitrosative stress and NO detoxifying reaction mechanisms in microbial nonheme diiron proteins
微生物非血红素二铁蛋白的亚硝化应激和NO解毒反应机制
  • 批准号:
    10656107
  • 财政年份:
    2023
  • 资助金额:
    $ 38.63万
  • 项目类别:
Multimodal Label-Free Nanosensor for Single Virus Characterization and Content Analysis
用于单一病毒表征和内容分析的多模式无标记纳米传感器
  • 批准号:
    10641529
  • 财政年份:
    2023
  • 资助金额:
    $ 38.63万
  • 项目类别:
Dynamical maintenance of left-right symmetry during vertebrate development
脊椎动物发育过程中左右对称的动态维持
  • 批准号:
    10797382
  • 财政年份:
    2023
  • 资助金额:
    $ 38.63万
  • 项目类别:
CRCNS: Role of mAChRs on CA 1 pyramidal neurons in memory formation and stability
CRCNS:mAChR 对 CA 1 锥体神经元在记忆形成和稳定性中的作用
  • 批准号:
    10831251
  • 财政年份:
    2023
  • 资助金额:
    $ 38.63万
  • 项目类别:
Development and In Vivo Validation of a Theoretical Framework and Practical Methods to Improve Safety and Efficacy of Neuromodulation Electrodes
提高神经调节电极安全性和有效性的理论框架和实用方法的开发和体内验证
  • 批准号:
    10572029
  • 财政年份:
    2023
  • 资助金额:
    $ 38.63万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了