Correlations of Li Deficiency, Diffusion, and Interfacial Impedance in Solid-State Batteries Probed by In Situ Tracer Exchange NMR and Depth-Profiling MRI Combined with Modeling

通过原位示踪交换 NMR 和深度剖面 MRI 结合建模探测固态电池中锂缺乏、扩散和界面阻抗的相关性

基本信息

  • 批准号:
    1808517
  • 负责人:
  • 金额:
    $ 30.16万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-09-01 至 2022-08-31
  • 项目状态:
    已结题

项目摘要

NON-TECHNICAL SUMMARYAll-solid-state rechargeable batteries promise high energy density, low cost, and improved safety. Therefore, they are considered as the next-generation battery technology for electric vehicles and expected to meet other critical needs for safer, more compact, and higher-capacity energy storage devices. However, low power density and poor long-term stability limit their practical applications and market competitiveness. This research, funded by the Solid State and Materials Chemistry program in the Division of Materials Research at NSF, uses new NMR and MRI techniques to provide new insights into the cause of these limitations and helps to develop high-performance solid-state rechargeable batteries. It also generates new knowledge that promotes in-depth understanding of fundamental interface chemistry, where the bottleneck lies for improved performance of other technologies including fuel cells, super-capacitors, and solar cells. The new NMR and MRI methodologies developed as part of this project not only facilitate the discovery of novel functional materials for technological applications, but might also benefit biomedical research. Additionally, the principle investigator actively recruits students from a HBCU institution and engages women and minority students in the ongoing research, thereby educating and training a diverse next generation of STEM researchers. Outreach activities aimed at engaging the general public in scientific discussions include the development of an app with the title "The Sound of NMR".TECHNICAL SUMMARYLarge resistance for mass and energy transport at electrode-solid electrolyte interfaces impedes the success of high-performance solid-state rechargeable batteries. Understanding Li-ion diffusion across these interfaces and its relationships with structures and compositions of interfaces is critical to addressing the challenges associated with interfacial impedance. This project, funded by the Solid State and Materials Chemistry program in the Division of Materials Research at NSF, probes ion transport through electrode-solid electrolyte interfaces by employing the tracer-exchange NMR method, to quantify Li deficiency with high-resolution depth-profiling magnetic resonance imaging (MRI), and determines interfacial resistance with electrochemical impedance spectroscopy, under both ex and in situ conditions. This study provides insight into the critical factors that limit ion transport at the interfaces, which aids interface design for optimal electrode-electrolyte compatibility with minimized interfacial impedance. The researchers establish real time correlations among Li deficiency, diffusion, and interfacial resistance. Two model systems, Li/Li7La3ZrO12/Li and Li/Li10GeP2S12/Li, are chosen for their representativeness of oxide and sulfide electrolytes and their distinct differences at the Li electrode-solid electrolyte interfaces. Based on the experimental investigation, an analytical model is developed to quantitatively elucidate the impact of Li deficiency and diffusion on interfacial impedance. This model is implemented in the RandFlux software, for predicting the electrochemical processes and performance of all-solid-state rechargeable batteries. For this project, the principle investigator actively recruits students from a HBCU institution and engages women and minority students in the ongoing research. Outreach activities aimed at engaging the general public in scientific discussions include the development of an app with the title "The Sound of NMR".This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术摘要全固态充电电池具有高能量密度、低成本和更高的安全性。因此,它们被认为是电动汽车的下一代电池技术,并有望满足对更安全、更紧凑和更高容量的储能设备的其他关键需求。然而,功率密度低和长期稳定性差限制了其实际应用和市场竞争力。这项研究由 NSF 材料研究部的固态和材料化学项目资助,使用新的 NMR 和 MRI 技术为这些限制的原因提供新的见解,并有助于开发高性能固态可充电电池。它还产生新的知识,促进对基本界面化学的深入理解,而基础界面化学是提高燃料电池、超级电容器和太阳能电池等其他技术性能的瓶颈所在。作为该项目一部分开发的新核磁共振和磁共振成像方法不仅有助于发现用于技术应用的新型功能材料,而且还可能有利于生物医学研究。此外,首席研究员还积极从 HBCU 机构招募学生,并让女性和少数族裔学生参与正在进行的研究,从而教育和培训多样化的下一代 STEM 研究人员。旨在让公众参与科学讨论的外展活动包括开发一款名为“核磁共振之声”的应用程序。 技术摘要电极-固体电解质界面的质量和能量传输阻力较大,阻碍了高性能固体电解质的成功。状态可充电电池。了解锂离子在这些界面上的扩散及其与界面结构和成分的关系对于解决与界面阻抗相关的挑战至关重要。该项目由美国国家科学基金会材料研究部的固态和材料化学项目资助,采用示踪交换核磁共振方法探测通过电极-固体电解质界面的离子传输,通过高分辨率深度分析来量化锂的缺乏磁共振成像 (MRI),并通过电化学阻抗谱测定在防爆和原位条件下的界面电阻。这项研究深入了解了限制界面离子传输的关键因素,这有助于界面设计,以最小化界面阻抗实现最佳电极-电解质兼容性。研究人员建立了锂缺乏、扩散和界面电阻之间的实时相关性。选择两个模型系统 Li/Li7La3ZrO12/Li 和 Li/Li10GeP2S12/Li,因为它们具有氧化物和硫化物电解质的代表性以及它们在 Li 电极-固体电解质界面上的明显差异。基于实验研究,开发了一个分析模型来定量阐明锂缺乏和扩散对界面阻抗的影响。该模型在 RandFlux 软件中实现,用于预测全固态充电电池的电化学过程和性能。对于这个项目,首席研究员积极从 HBCU 机构招募学生,并让女性和少数民族学生参与正在进行的研究。旨在让公众参与科学讨论的外展活动包括开发一款名为“核磁共振之声”的应用程序。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响进行评估,被认为值得支持审查标准。

项目成果

期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Improving the electrochemical performance of Li 4 Ti 5 O 12 anode by phosphorus reduction at a relatively low temperature
低温磷还原改善Li 4 Ti 5 O 12 负极电化学性能
  • DOI:
    10.1039/c8cc07026a
  • 发表时间:
    2018-12
  • 期刊:
  • 影响因子:
    4.9
  • 作者:
    Deng, Wenwen;Feng, Xuyong;Li, Xiang;O'Neill, Sean;Hu, Lin;Liu, Luyao;Wong, Wai;Hu, Yan;Li, Chang Ming
  • 通讯作者:
    Li, Chang Ming
Recent Advances in Solid-State Nuclear Magnetic Resonance Techniques for Materials Research
材料研究固态核磁共振技术的最新进展
  • DOI:
    10.1146/annurev-matsci-091019-011049
  • 发表时间:
    2020-07-01
  • 期刊:
  • 影响因子:
    9.7
  • 作者:
    Po‐Hsiu Chien;Kent J. Griffith;Haoyu Liu;Z. Gan;Yan‐Yan Hu
  • 通讯作者:
    Yan‐Yan Hu
Enhanced ion conduction by enforcing structural disorder in Li-deficient argyrodites Li6−xPS5−xCl1+x
通过在缺锂的银铜矿 Li6−xPS5−xCl1 x 中强制结构无序来增强离子传导
  • DOI:
    10.1016/j.ensm.2020.04.042
  • 发表时间:
    2020-09-01
  • 期刊:
  • 影响因子:
    20.4
  • 作者:
    Xuyong Feng;Po‐Hsiu Chien;Yan Wang;Sawankumar V. Patel;Pengbo Wang;Haoyu Liu;Marcello Immediato;Yan‐Yan Hu
  • 通讯作者:
    Yan‐Yan Hu
Studies of Functional Defects for Fast Na‐Ion Conduction in Na 3− y PS 4− x Cl x with a Combined Experimental and Computational Approach
采用实验和计算相结合的方法研究 Na 3–y PS 4–x Cl x 中快速 Na–离子传导的功能缺陷
  • DOI:
    10.1002/adfm.201807951
  • 发表时间:
    2019-01
  • 期刊:
  • 影响因子:
    19
  • 作者:
    Feng, Xuyong;Chien, Po‐Hsiu;Zhu, Zhuoying;Chu, Iek‐Heng;Wang, Pengbo;Immediato‐Scuotto, Marcello;Arabzadeh, Hesam;Ong, Shyue Ping;Hu, Yan‐Yan
  • 通讯作者:
    Hu, Yan‐Yan
High-performance all-solid-state batteries enabled by salt bonding to perovskite in poly(ethylene oxide)
通过盐键合聚环氧乙烷中的钙钛矿实现高性能全固态电池
  • DOI:
    10.1073/pnas.1907507116
  • 发表时间:
    2019-08-29
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Henghui Xu;Po‐Hsiu Chien;Jianjian Shi;Yutao Li;Nan Wu;Yuanyue Liu;Yan‐Yan Hu;J. Goodenough
  • 通讯作者:
    J. Goodenough
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yan-Yan Hu其他文献

Solvation and diffusion of poly(vinyl alcohol) chains in a hydrated inorganic ionic liquid
  • DOI:
    10.1039/d0cp02679d
  • 发表时间:
    2020-07
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Parvin Karimineghlani;Jin Zheng;Yan-Yan Hu;Svetlana Sukhishvili
  • 通讯作者:
    Svetlana Sukhishvili
Polymer-based hybrid battery electrolytes: theoretical insights, recent advances and challenges
  • DOI:
    10.1039/d0ta11679c
  • 发表时间:
    2021-02
  • 期刊:
  • 影响因子:
    11.9
  • 作者:
    Jelena Popovic;Daniel Brandell;Sanyeuki Ohno;Kelsey B. Hatzell;Jin Zheng;Yan-Yan Hu
  • 通讯作者:
    Yan-Yan Hu
In situsynthesis andin operandoNMR studies of a high-performance Ni5P4-nanosheet anode
  • DOI:
    10.1039/c8ta05433a
  • 发表时间:
    2018-09
  • 期刊:
  • 影响因子:
    11.9
  • 作者:
    Xuyong Feng;Mingxue Tang;Sean O'Neill;Yan-Yan Hu
  • 通讯作者:
    Yan-Yan Hu
A novel plasmid carrying carbapenem-resistant gene bla KPC-2 in Pseudomonas aeruginosa
铜绿假单胞菌耐碳青霉烯类基因bla KPC-2的新型质粒
  • DOI:
    10.2147/idr.s196390
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Yan-Yan Hu;Qi Wang;Qiao-Ling Sun;Gong-Xiang Chen;Rong Zhang
  • 通讯作者:
    Rong Zhang
Coaxial Carbon Nanotube Supported TiO2@MoO2@Carbon Core−Shell Anode for Ultrafast and High-Capacity Sodium Ion Storage
同轴碳纳米管支撑TiO2@MoO2@碳核壳阳极用于超快高容量钠离子存储
  • DOI:
    10.1016/j.chemosphere.2015.11.046
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    17.1
  • 作者:
    Chunrong Ma;Xiang Li;Changjian Deng;Yan-Yan Hu;Xiao-Zhen Liao;Zi-Feng Ma;Hui Xiong
  • 通讯作者:
    Hui Xiong

Yan-Yan Hu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yan-Yan Hu', 18)}}的其他基金

Deciphering the Competing Mechanisms of Li Microstructure Formation in Solid Electrolytes with Nuclear Magnetic Resonance Spectroscopy (NMR) and Imaging (MRI)
利用核磁共振波谱 (NMR) 和成像 (MRI) 解读固体电解质中锂微结构形成的竞争机制
  • 批准号:
    2319151
  • 财政年份:
    2024
  • 资助金额:
    $ 30.16万
  • 项目类别:
    Continuing Grant
CAREER: Leveraging Defects & Disorder for Fast Ion Conduction
职业生涯:利用缺陷
  • 批准号:
    1847038
  • 财政年份:
    2019
  • 资助金额:
    $ 30.16万
  • 项目类别:
    Continuing Grant
SusChEM: Ionic Conduction Mechanisms in Low-cost and Rare-earth-free Fast Ion Conductors
SusChEM:低成本、无稀土快离子导体中的离子传导机制
  • 批准号:
    1508404
  • 财政年份:
    2015
  • 资助金额:
    $ 30.16万
  • 项目类别:
    Standard Grant

相似国自然基金

没食子酸和异鼠李素协同调控马铃薯多酚氧化酶催化活性和结构的机制研究
  • 批准号:
    32302178
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
新型光-电-热协同辅助Li-CO2电池器件创制及其原位机理研究
  • 批准号:
    22369002
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
鼠李糖乳杆菌1.0320联合菊粉调节肠道微生态重塑肠道屏障功能的分子机制研究
  • 批准号:
    32372343
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
鼠李糖乳杆菌通过ILA/PXR/CYP3A4轴缓解雷公藤肝损伤的机制研究
  • 批准号:
    82300680
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
罗非鱼鼠李糖凝集素基因(OnRBL)介导柱状黄杆菌粘附侵染的分子机制
  • 批准号:
    32303046
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Fire-retardant Solid State Electrolytes for Rechargeable Li-ion Batteries
用于可充电锂离子电池的阻燃固态电解质
  • 批准号:
    DP240102728
  • 财政年份:
    2024
  • 资助金额:
    $ 30.16万
  • 项目类别:
    Discovery Projects
イオン液体中におけるLi/Li(I)平衡電位の理解と制御
离子液体中Li/Li(I)平衡电位的理解和控制
  • 批准号:
    24K08592
  • 财政年份:
    2024
  • 资助金额:
    $ 30.16万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
CAREER: Structural Implications of Anion Redox in Li-Rich Sulfide Cathodes for Li-ion Batteries
职业:锂离子电池富锂硫化物阴极中阴离子氧化还原的结构影响
  • 批准号:
    2340864
  • 财政年份:
    2024
  • 资助金额:
    $ 30.16万
  • 项目类别:
    Continuing Grant
EAGER: CET: Biohydrometallurgic Recycling of Spent Li-ion Batteries
EAGER:CET:废旧锂离子电池的生物湿法冶金回收
  • 批准号:
    2342967
  • 财政年份:
    2024
  • 资助金额:
    $ 30.16万
  • 项目类别:
    Standard Grant
GOALI: Development of Next Generation MXene-based Li-S Batteries with Practical Operating Temperatures
GOALI:开发具有实用工作温度的下一代 MXene 基锂硫电池
  • 批准号:
    2427203
  • 财政年份:
    2024
  • 资助金额:
    $ 30.16万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了