SPX: Collaborative research: Scalable Heterogeneous Migrating Threads for Post-Moore Computing
SPX:协作研究:后摩尔计算的可扩展异构迁移线程
基本信息
- 批准号:1822939
- 负责人:
- 金额:$ 52.45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-10-01 至 2023-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The project will advance the state of the art in computer architecture and programming systems for extreme and heterogeneous parallelism. It is clear that the post-Moore' law era will require major disruptions in computing systems. This project will address computer architecture and programming system challenges for this new era, with a focus on approaches that are expected to be scalable in size, cost effectiveness, and usability by retaining some tenets of the von Neumann computing model (unlike more exploratory approaches like biological or quantum computing). By emphasizing data analytics, the work will also benefit a rapidly growing swatch of modern life (commercial, cyber, national security, social networks). A deeper understanding of how such applications can be made more scalable, and responsive enough to handle increasing real-time requirements, should lead to wider impacts across every-day life with significant potential for technology transition. There is also a direct connection to pedagogy and workforce development, since both hardware and software aspects of this proposal can enable a broad range of students to better understand the wider diversity of computing platforms projected in future technology roadmaps. The SHMT (Scalable Heterogeneous Migrating Thread) model developed in this award will include extensions to the migrating threads and asynchronous task models to support heterogeneity, and extensions to the transaction and actor models to support data coherence. Further, the investigators propose to use data analytic graph problems to evaluate their research, since these applications are both important in practice and are challenging to solve on current systems. Given the expected continued increase in the size, complexity, and dynamic nature of such computations, it is of growing value to understand how to implement them in a manner that can scale to very high levels of concurrency in environments that include high rate streams of both updates and queries. These techniques can also apply to other application classes, such as scientific applications where data is sparse or irregular. The overall objective of this 3-year research project is to advance the foundations of computer architecture and programming systems to address the emerging challenges of scalable parallelism and extreme heterogeneity, with an emphasis on data analytics and solving data coherence, system management, resource allocation, and task scheduling issues. The investigators will leverage their distinct but synergistic expertise in the architecture and programming systems areas by building on, and integrating, their past work on migrating threads and near-memory processing, software support for asynchronous task parallelism for heterogeneous computing, and data analytics. The Center for Research into Novel Computing Hierarchies (CRNCH) at Georgia Tech will provide access to first-of-a-kind alternative systems for use in evaluating the new concepts. Industrial collaborators include Lexis-Nexis Risk Solutions and Kyndi, for whom graph data analytics are central to their business model.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目将在计算机架构和编程系统中推进最高和异质并行性的技术。很明显,后期后的法律时代将需要计算系统中的重大干扰。该项目将解决这个新时代的计算机架构和编程系统挑战,重点是通过保留von Neumann计算模型的某些原则(与生物学或量子计算等更多探索性方法不同),预计有望在规模,成本效益和可用性方面具有可扩展性的方法。通过强调数据分析,这项工作还将受益于现代生活的快速增长(商业,网络,国家安全,社交网络)。更深入地了解如何使这些应用程序更具扩展性,并且足够迅速地应对实时需求的响应能力,这应该会导致每日生活的更大影响,并具有巨大的技术过渡潜力。与教育学和劳动力发展有直接的联系,因为该提案的硬件和软件方面都可以使广泛的学生能够更好地了解未来技术路线图中投影的计算平台的更广泛多样性。该奖项中开发的SHMT(可扩展的异质迁移线程)将包括向迁移线程和异步任务模型的扩展,以支持异质性,以及对交易和Actor模型的扩展,以支持数据相干性。此外,研究人员建议使用数据分析图问题来评估其研究,因为这些应用在实践中都很重要,并且在当前系统上挑战。考虑到此类计算的规模,复杂性和动态性质的预期持续增加,了解如何以可以扩展到包括更新和查询的高速速率流中的环境中的高度并发率的方式来了解它们的价值越来越大。这些技术也可以应用于其他应用程序类别,例如数据稀疏或不规则的科学应用程序。这个为期三年的研究项目的总体目标是推动计算机架构和编程系统的基础,以应对可扩展并行性和极端异质性的新兴挑战,重点是数据分析并解决数据连贯性,系统管理,资源分配和任务计划问题。研究人员将通过构建和整合到迁移线程和近乎内存处理的工作,在架构和编程系统领域中的独特但协同的专业知识,对异质计算的异步任务并行的软件支持以及数据分析。佐治亚理工学院的新型计算层次结构研究中心(CRNCH)将为您提供首个替代系统,以评估新概念。工业合作者包括Lexis-Nexis风险解决方案和Kyndi,对于其图形数据分析对其业务模型至关重要。该奖项反映了NSF的法定任务,并被认为是通过基金会的知识分子的智力优点和更广泛影响的评估标准来通过评估来获得支持的。
项目成果
期刊论文数量(12)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Multi-threading Semantics for Highly Heterogeneous Systems Using Mobile Threads
使用移动线程的高度异构系统的多线程语义
- DOI:
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Kogge, Peter M.
- 通讯作者:Kogge, Peter M.
Greatly Accelerated Scaling of Streaming Problems with A Migrating Thread Architecture
通过迁移线程架构大大加速流处理问题的扩展
- DOI:10.1109/ia354616.2021.00009
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Page, Brian A.;Kogge, Peter M.
- 通讯作者:Kogge, Peter M.
Scalability of streaming on migrating threads
迁移线程上流的可扩展性
- DOI:
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Page, Brian A.;Kogge, Peter M.
- 通讯作者:Kogge, Peter M.
Scalability of Sparse Matrix Dense Vector Multiply (SpMV) on a Migrating Thread Architecture
迁移线程架构上稀疏矩阵密集向量乘法 (SpMV) 的可扩展性
- DOI:10.1109/ipdpsw50202.2020.00088
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Page, Brian A.;Kogge, Peter M.
- 通讯作者:Kogge, Peter M.
Locality: The 3rd Wall and The Need for Innovation in Parallel Architectures
局部性:第三堵墙和并行架构创新的需求
- DOI:
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Kogge, Peter M;Page, Brian A
- 通讯作者:Page, Brian A
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Peter Kogge其他文献
Peter Kogge的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Peter Kogge', 18)}}的其他基金
IUCRC Phase I University of Notre Dame: Center for Quantum Technologies (CQT)
IUCRC 第一阶段圣母大学:量子技术中心 (CQT)
- 批准号:
2224985 - 财政年份:2022
- 资助金额:
$ 52.45万 - 项目类别:
Continuing Grant
IUCRC Planning Grant University of Notre Dame: Center for Quantum Technologies (CQT)
IUCRC 规划拨款圣母大学:量子技术中心 (CQT)
- 批准号:
2052706 - 财政年份:2021
- 资助金额:
$ 52.45万 - 项目类别:
Standard Grant
EAGER: Developing scalable benchmark mini-apps for graph engine comparison
EAGER:开发可扩展的基准迷你应用程序以进行图形引擎比较
- 批准号:
1642280 - 财政年份:2016
- 资助金额:
$ 52.45万 - 项目类别:
Standard Grant
NIRT: Architectures and Devices for Quantum-dot Cellular Automata
NIRT:量子点元胞自动机的架构和设备
- 批准号:
0210153 - 财政年份:2002
- 资助金额:
$ 52.45万 - 项目类别:
Standard Grant
PDS: Pursuing a Petaflop: Point Designs for 100TF Computers Using PIM Technologies
PDS:追求千万亿次浮点运算:使用 PIM 技术的 100TF 计算机的单点设计
- 批准号:
9612028 - 财政年份:1996
- 资助金额:
$ 52.45万 - 项目类别:
Standard Grant
Architectural Techniques for Inherently Lower Power Computers
固有低功耗计算机的架构技术
- 批准号:
9503682 - 财政年份:1995
- 资助金额:
$ 52.45万 - 项目类别:
Standard Grant
相似国自然基金
数智背景下的团队人力资本层级结构类型、团队协作过程与团队效能结果之间关系的研究
- 批准号:72372084
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
在线医疗团队协作模式与绩效提升策略研究
- 批准号:72371111
- 批准年份:2023
- 资助金额:41 万元
- 项目类别:面上项目
面向人机接触式协同作业的协作机器人交互控制方法研究
- 批准号:62373044
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于数字孪生的颅颌面人机协作智能手术机器人关键技术研究
- 批准号:82372548
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
A-型结晶抗性淀粉调控肠道细菌协作产丁酸机制研究
- 批准号:32302064
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
SPX: Collaborative Research: Automated Synthesis of Extreme-Scale Computing Systems Using Non-Volatile Memory
SPX:协作研究:使用非易失性存储器自动合成超大规模计算系统
- 批准号:
2408925 - 财政年份:2023
- 资助金额:
$ 52.45万 - 项目类别:
Standard Grant
SPX: Collaborative Research: Scalable Neural Network Paradigms to Address Variability in Emerging Device based Platforms for Large Scale Neuromorphic Computing
SPX:协作研究:可扩展神经网络范式,以解决基于新兴设备的大规模神经形态计算平台的可变性
- 批准号:
2401544 - 财政年份:2023
- 资助金额:
$ 52.45万 - 项目类别:
Standard Grant
SPX: Collaborative Research: Intelligent Communication Fabrics to Facilitate Extreme Scale Computing
SPX:协作研究:促进超大规模计算的智能通信结构
- 批准号:
2412182 - 财政年份:2023
- 资助金额:
$ 52.45万 - 项目类别:
Standard Grant
SPX: Collaborative Research: Cross-stack Memory Optimizations for Boosting I/O Performance of Deep Learning HPC Applications
SPX:协作研究:用于提升深度学习 HPC 应用程序 I/O 性能的跨堆栈内存优化
- 批准号:
2318628 - 财政年份:2022
- 资助金额:
$ 52.45万 - 项目类别:
Standard Grant
SPX: Collaborative Research: NG4S: A Next-generation Geo-distributed Scalable Stateful Stream Processing System
SPX:合作研究:NG4S:下一代地理分布式可扩展状态流处理系统
- 批准号:
2202859 - 财政年份:2022
- 资助金额:
$ 52.45万 - 项目类别:
Standard Grant