Collaborative research: Gaussian Process Frameworks for Modeling and Control of Stochastic Systems
合作研究:随机系统建模和控制的高斯过程框架
基本信息
- 批准号:1821258
- 负责人:
- 金额:$ 15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-08-01 至 2021-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Quantitative models for decision making under uncertainty continue to attract intense effort across natural sciences and engineering. With the advent of ever more sophisticated models in applications, computational demands continue to outpace what is feasible and the premium on efficient numerical approaches remains high. The investigators will explore synergies between the latest machine learning techniques and control paradigms, arising in applications as diverse as finance, energy storage and security, and the epidemiological modeling of infectious diseases. The developed "smart" algorithms will deliver performance upgrades essential for using simulations in tackling large-scale/complex settings. The project will also contribute to inter-disciplinary training in mathematical sciences across undergraduate, graduate and post-doctoral levels. The investigators will investigate statistical learning techniques for modeling, analysis and control of nonlinear dynamic stochastic systems. Through developing algorithms and statistical models for complex stochastic simulators, and active learning strategies for autonomous data acquisition, the project will achieve enhanced capabilities and efficiency in mathematical analysis of dynamic random phenomena. The approach hinges on the use of high fidelity approximate Gaussian Process surrogates to adaptively allocate computing resources in order to maximize the learning rate of the input-output relationship for modeling objectives or of the input-control map for dynamic programming. By connecting stochastic simulation with machine learning and non-parametric statistics, and integrating with the computational implementation, the project will enhance knowledge discovery in large-scale simulation and optimization settings.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在不确定性下进行决策的定量模型继续吸引自然科学和工程的巨大努力。随着应用程序中越来越复杂的模型的出现,计算需求继续超过可行的,并且有效的数值方法的溢价仍然很高。研究人员将探索最新的机器学习技术与控制范式之间的协同作用,这些应用在金融,储能和安全等多样化的应用中以及传染病的流行病学建模。开发的“智能”算法将提供对使用模拟来解决大规模/复杂设置所必需的性能升级。该项目还将为跨本科,研究生和博士后水平的数学科学进行跨学科培训。研究人员将研究非线性动态随机系统建模,分析和控制的统计学习技术。通过开发复杂随机模拟器的算法和统计模型,以及自主数据获取的主动学习策略,该项目将在动态随机现象的数学分析中实现增强的能力和效率。该方法取决于使用高保真度近似高斯流程代理,以适应分配计算资源,以最大程度地提高目标形成目标或动态编程的输入控制映射的输入输出关系的学习率。通过将随机模拟与机器学习和非参数统计数据联系起来,并与计算实现集成,该项目将在大规模的模拟和优化环境中增强知识发现。该奖项反映了NSF的法定任务,并被认为是通过基金会的知识分子和更广泛的影响来评估的支持,并被认为是值得的。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Locally induced Gaussian processes for large-scale simulation experiments
- DOI:10.1007/s11222-021-10007-9
- 发表时间:2020-08
- 期刊:
- 影响因子:2.2
- 作者:D. Cole;R. Christianson;R. Gramacy
- 通讯作者:D. Cole;R. Christianson;R. Gramacy
Distance-Distributed Design for Gaussian Process Surrogates
- DOI:10.1080/00401706.2019.1677269
- 发表时间:2018-12
- 期刊:
- 影响因子:2.5
- 作者:Boya Zhang;D. Cole;R. Gramacy
- 通讯作者:Boya Zhang;D. Cole;R. Gramacy
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Robert Gramacy其他文献
Robert Gramacy的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Robert Gramacy', 18)}}的其他基金
CDS&E/Collaborative Research: Local Gaussian Process Approaches for Predicting Jump Behaviors of Engineering Systems
CDS
- 批准号:
2152679 - 财政年份:2022
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
CDS&E-MSS/Collaborative Research: Sequential Design for Stochastic Control: Active Learning of Optimal Policies
CDS
- 批准号:
1849794 - 财政年份:2018
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Collaborative Research: CDS&E-MSS: Local Approximation for Large Scale Spatial Modeling
合作研究:CDS
- 批准号:
1621746 - 财政年份:2016
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
CDS&E-MSS/Collaborative Research: Sequential Design for Stochastic Control: Active Learning of Optimal Policies
CDS
- 批准号:
1521702 - 财政年份:2015
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
相似国自然基金
基于数据驱动理论的非高斯随机动力系统离出问题研究
- 批准号:12302035
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
受约束高维数据驱动的多任务高斯过程智能建模方法研究及应用
- 批准号:52375231
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
山地非高斯风场作用下的风机结构极值响应和疲劳损伤研究
- 批准号:52378480
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
MIMO高斯多用户信道的容量域研究
- 批准号:62371119
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
面向角度变化反射系数的快速最小二乘高斯束偏移成像方法研究
- 批准号:42374166
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
相似海外基金
CDS&E/Collaborative Research: Local Gaussian Process Approaches for Predicting Jump Behaviors of Engineering Systems
CDS
- 批准号:
2420358 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Collaborative Research: Bayesian Residual Learning and Random Recursive Partitioning Methods for Gaussian Process Modeling
合作研究:高斯过程建模的贝叶斯残差学习和随机递归划分方法
- 批准号:
2348163 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Collaborative Research: Adaptive Data Assimilation for Nonlinear, Non-Gaussian, and High-Dimensional Combustion Problems on Supercomputers
合作研究:超级计算机上非线性、非高斯和高维燃烧问题的自适应数据同化
- 批准号:
2403552 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
Collaborative Research: Adaptive Gaussian Markov Random Fields for Large-scale Discrete Optimization via Simulation
协作研究:通过仿真实现大规模离散优化的自适应高斯马尔可夫随机场
- 批准号:
2243210 - 财政年份:2022
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Collaborative Research: AMPS: Robust Failure Probability Minimization for Grid Operational Planning with Non-Gaussian Uncertainties
合作研究:AMPS:具有非高斯不确定性的电网运行规划的鲁棒故障概率最小化
- 批准号:
2229408 - 财政年份:2022
- 资助金额:
$ 15万 - 项目类别:
Standard Grant