Collaborative Research: Defect Immune, Topologically Protected Devices for Ultra-Low Power Electronics

合作研究:用于超低功率电子器件的缺陷免疫、拓扑保护器件

基本信息

  • 批准号:
    1802167
  • 负责人:
  • 金额:
    $ 12万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-08-01 至 2021-07-31
  • 项目状态:
    已结题

项目摘要

Imperfections in materials, such as defects or edge roughness, often severely limit electronic device performance. This is especially problematic at the nanoscale where even a single atomic defect can drastically disrupt transport. Devices that are tolerant to these imperfections are thus the key to future technologies. The investigation of the fundamental properties and integration of two new defect-tolerant device concepts is proposed, enabled by novel 2D and 3D topological insulators (TIs), that exhibit unprecedented low-power, room temperature performance and functionalities only achievable using these unique materials. This tolerance to defects will enable nanoelectronics beyond the currently known limits and will specifically impact the national grand challenge of enabling ultra-low-power, post-silicon electronics and represent significant progress in an area of national technological strength, semiconductor electronics. A team of researchers with complementary expertise, including junior investigators complemented by accomplished senior professors, will address the challenges of the proposed work. This research will also broaden scientific and educational participation by creating a pipeline of pre-college and undergraduate students motivated to study science and engineering at universities through, for example, NSF-sponsored Research Experiences for Undergraduates (REU) programs and collaborations with national laboratories and industry partners. The researchers will also engage the public through science cafe programs where faculty members present their research in local pubs and restaurants.This collaborative research team will elucidate the fundamental science and technological implications of new topological insulator (TI)-based nanoelectronic device concepts that can operate at low-power, well above room temperature. Two complementary research threads will be pursued, both of which will enable a new, ultra-low-power, topologically protected device made of bismuth-based materials: 1) a 2D TI-based field-effect transistor that is immune to materials and device imperfections such as defects and line-edge roughness, and 2) a 3D TI-based tunneling device utilizing spin-filtering to exhibit negative differential resistance with unprecedented peak-to-valley ratio performance. TI growth by molecular beam epitaxy (Hinkle) will focus on 2D Bi and 3D Bi2Se3, which have predicted room-temperature device applications. Surface and edge state detection and chemical/structural properties will be investigated using in-situ techniques (Wallace). Theoretical studies including density functional theory (DFT), scattering, and mobility calculations (Vandenberghe) will be employed. Advanced 2- and 3-terminal devices will be fabricated (Banerjee) and these device characteristics will be evaluated in NAND gates. This research will provide materials and device concepts for advanced low-power, high-performance logic, memory, and even oscillatory neuromorphic applications using TIs, a class of devices which are extremely robust against defects/impurities. A TI and 2D materials property and benchmarking database through collaboration with NIST will also be established.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
材料的缺陷,例如缺陷或边缘粗糙度,通常会严重限制电子设备的性能。这在纳米尺度上尤其成问题,即使是单个原子缺陷也会严重破坏运输。 因此,能够容忍这些缺陷的设备是未来技术的关键。提出了对两种新的容错器件概念的基本特性和集成的研究,通过新颖的 2D 和 3D 拓扑绝缘体 (TI) 实现,它们表现出前所未有的低功耗、室温性能和功能,只有使用这些独特的材料才能实现。这种对缺陷的容忍度将使纳米电子学超越目前已知的极限,并将特别影响实现超低功耗、后硅电子学的国家重大挑战,并代表国家技术实力领域半导体电子学的重大进步。 一个由具有互补专业知识的研究人员组成的团队,包括初级研究人员和资深教授的补充,将解决拟议工作的挑战。 这项研究还将通过创建一条有动力在大学学习科学和工程的预科生和本科生渠道,扩大科学和教育参与,例如,通过 NSF 资助的本科生研究经验 (REU) 项目以及与国家实验室和行业合作伙伴。 研究人员还将通过科学咖啡馆项目吸引公众,教职人员在当地的酒吧和餐馆展示他们的研究成果。这个合作研究团队将阐明可操作的基于新型拓扑绝缘体(TI)的纳米电子器件概念的基本科学和技术含义在低功率下,远高于室温。 将进行两条互补的研究线索,这两条线索都将实现由铋基材料制成的新型超低功耗、拓扑保护器件:1)基于 TI 的 2D 场效应晶体管,不受材料和器件的影响缺陷和线边缘粗糙度等缺陷;2) 基于 3D TI 的隧道器件,利用自旋过滤展现负微分电阻和前所未有的峰谷比性能。 通过分子束外延 (Hinkle) 进行的 TI 生长将重点关注 2D Bi 和 3D Bi2Se3,它们已预测了室温器件的应用。 将使用原位技术(Wallace)研究表面和边缘状态检测以及化学/结构特性。 将采用包括密度泛函理论 (DFT)、散射和迁移率计算 (Vandenberghe) 在内的理论研究。 将制造先进的 2 端和 3 端器件 (Banerjee),并将在 NAND 门中评估这些器件特性。这项研究将为先进的低功耗、高性能逻辑、存储器甚至使用 TI 的振荡神经形态应用提供材料和设备概念,TI 是一类对缺陷/杂质具有极强鲁棒性的设备。 还将通过与 NIST 合作建立 TI 和 2D 材料属性和基准数据库。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sanjay Banerjee其他文献

Uninsured Risks, Loan Contracts and the Declining Equity Premium
未保险风险、贷款合同和股本溢价下降
  • DOI:
  • 发表时间:
    2005-08-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sanjay Banerjee;P. Basu
  • 通讯作者:
    P. Basu
STRATEGIC RESPONSES TO AN ENVIRONMENTAL JOLT: EXECUTIVE TURNOVER IN INTERNET IPOs
应对环境冲击的战略应对:互联网首次公开募股中的高管人员变动
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Daniel P. Forbes;Shalini Manrakhan;Sanjay Banerjee
  • 通讯作者:
    Sanjay Banerjee
Strategic Responses to an Environmental Jolt
对环境冲击的战略反应
  • DOI:
    10.3905/jpe.2004.450953
  • 发表时间:
    2004-11-30
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Daniel P. Forbes;Shalini Manrakhan;Sanjay Banerjee
  • 通讯作者:
    Sanjay Banerjee
Prior Alliances with Targets and Acquisition Performance in Knowledge-Intensive Industries
先前与知识密集型行业的目标和收购绩效的联盟
  • DOI:
    10.1287/orsc.1100.0528
  • 发表时间:
    2010-09-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. Zaheer;Exequiel Hern;ez;ez;Sanjay Banerjee
  • 通讯作者:
    Sanjay Banerjee
DIPRM IN E-COMMERCE SYSTEM – A UML BASED APPROACH
电子商务系统中的 DIPRM — 基于 UML 的方法
  • DOI:
  • 发表时间:
    2024-09-14
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sanjay Banerjee
  • 通讯作者:
    Sanjay Banerjee

Sanjay Banerjee的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sanjay Banerjee', 18)}}的其他基金

NNCI: Texas Nanofabrication Facility (TNF)
NNCI:德克萨斯纳米加工设施 (TNF)
  • 批准号:
    2025227
  • 财政年份:
    2020
  • 资助金额:
    $ 12万
  • 项目类别:
    Cooperative Agreement
NNCI: Texas Nanofabrication Facility (TNF)
NNCI:德克萨斯纳米加工设施 (TNF)
  • 批准号:
    1542159
  • 财政年份:
    2015
  • 资助金额:
    $ 12万
  • 项目类别:
    Cooperative Agreement
Travel Support Grant to attend the Fourth International Nanotechnology Conference on Communication and Cooperation. To be held on April 14-17, 2008 in Tokyo, Japan.
参加第四届国际纳米技术交流与合作会议的旅费资助。
  • 批准号:
    0826698
  • 财政年份:
    2008
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
Conference: Travel Support Grant to attend the Third International Nanotechnology Conference onCommunication and Cooperation. To be held April 16-19, 2007 in Brussels, Belgium.
会议:参加第三届国际纳米技术交流与合作会议的旅费资助。
  • 批准号:
    0726991
  • 财政年份:
    2007
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
NIRT: Spatially Ordered Self-Assembled Quantum Dot Gate Low Voltage/Power, High Speed Nanoscale Flash Memories
NIRT:空间有序自组装量子点门低电压/功耗高速纳米级闪存
  • 批准号:
    0304026
  • 财政年份:
    2003
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
Presidential Young Investigator Award: High Speed Optoelectronic Devices and VLSI Structures by Laser Enhanced Epitaxy
总统青年研究员奖:激光增强外延高速光电器件和 VLSI 结构
  • 批准号:
    8858352
  • 财政年份:
    1988
  • 资助金额:
    $ 12万
  • 项目类别:
    Continuing Grant

相似国自然基金

IGF-1R调控HIF-1α促进Th17细胞分化在甲状腺眼病发病中的机制研究
  • 批准号:
    82301258
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
CTCFL调控IL-10抑制CD4+CTL旁观者激活促口腔鳞状细胞癌新辅助免疫治疗抵抗机制研究
  • 批准号:
    82373325
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
RNA剪接因子PRPF31突变导致人视网膜色素变性的机制研究
  • 批准号:
    82301216
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
血管内皮细胞通过E2F1/NF-kB/IL-6轴调控巨噬细胞活化在眼眶静脉畸形中的作用及机制研究
  • 批准号:
    82301257
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于多元原子间相互作用的铝合金基体团簇调控与强化机制研究
  • 批准号:
    52371115
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Bridging the atomic scale and the mesoscale in the characterization of defect production and evolution in high entropy alloys
合作研究:在高熵合金缺陷产生和演化表征中连接原子尺度和介观尺度
  • 批准号:
    2425965
  • 财政年份:
    2024
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
Modernization of 3-dimensional printing capabilities at the Aquatic Germplasm and Genetic Resource Center
水产种质和遗传资源中心 3 维打印能力的现代化
  • 批准号:
    10736961
  • 财政年份:
    2023
  • 资助金额:
    $ 12万
  • 项目类别:
Center of Biomedical Research Excellence in CNS Metabolism
中枢神经系统代谢生物医学卓越研究中心
  • 批准号:
    10557542
  • 财政年份:
    2023
  • 资助金额:
    $ 12万
  • 项目类别:
Regulation and function of subcellular RNA localization in neural crest cells and their derivatives
神经嵴细胞及其衍生物亚细胞RNA定位的调控和功能
  • 批准号:
    10739280
  • 财政年份:
    2023
  • 资助金额:
    $ 12万
  • 项目类别:
2023 Collagen Gordon Research Conference and Seminar
2023年胶原蛋白戈登研究会议暨研讨会
  • 批准号:
    10675849
  • 财政年份:
    2023
  • 资助金额:
    $ 12万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了