SHF:SMALL:Collaborative Research: Exploring Nonvolatility of Emerging Memory Technologies for Architecture Design
SHF:SMALL:合作研究:探索新兴内存技术的非易失性以用于架构设计
基本信息
- 批准号:1816833
- 负责人:
- 金额:$ 24.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-08-01 至 2021-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In modern computers, by combining the speed of traditional cache technology, the density of traditional main memory technology, and the non-volatility of flash memory, a new class of emerging byte-addressable nonvolatile memories (NVMs) have great potential to be used as the universal memories of the future. Such memory types include technologies such as phase-change memory, spin-transfer-torque magnetoresistive memory, and resistive memory. As these emerging memory technologies mature, it is important for computer architects to understand their pros and cons in a comprehensive manner in order to improve the performance, power, and reliability of future computer systems incorporating these systems which will be used in various application domains. Yet, most of previous research on NVM architecture is focused only on the performance, power, and density benefits and how to overcome challenges, such as write overhead and wearout issues. The non-volatility characteristic of NVM technologies is not fully explored. Therefore, this project examines how to exploit the non-volatility characteristic that distinguishes the emerging NVM technologies from traditional memory technologies, and investigate new memory architecture design with novel applications.The goal of this project is to advance the memory architecture design of various types of computer systems with a full exploration of the non-volatility characteristic of NVM technologies across architecture, system, and application levels. To this end, the project explores the design space of various types of computer systems, ranging from severs to embedded systems. In particular, the project identifies and addresses design issues in nonvolatile cache architecture, re-architects main memory structure to leverage the non-volatility characteristic to improve system performance and energy consumption, supports persistent memory systems in various use cases with emerging NVM technologies, and studies near-data-computing techniques applied for these NVM technologies. The successful outcome of this research is expected to provide the design guidelines for enabling both large capacity and fast-bandwidth nonvolatile memory/storage, which are beyond the present state-of-the-art. Consequently, the research will spawn new applications involving the computation on the exascale of data, e.g., data mining, machine learning, visual or auditory sensory data recognition, bio-informatics, etc.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在现代计算机中,通过结合传统的缓存技术的速度,传统的主要记忆技术的密度以及闪存的非挥发性,一类新的新出现的字节可调性的非挥发性记忆(NVM)具有巨大的潜力,可以用作未来的普遍记忆。这样的内存类型包括诸如相变内存,旋转转移磁力磁盘的内存和电阻内存等技术。随着这些新兴内存技术的成熟,对于计算机架构师来说,重要的是要以全面的方式理解其优点和缺点,以提高结合这些系统将在各种应用程序领域中使用的未来计算机系统的性能,功率和可靠性。然而,先前关于NVM体系结构的大多数研究仅集中在性能,力量和密度收益上,以及如何克服挑战,例如写开销和磨损问题。 NVM技术的非挥发性特征没有得到充分探索。因此,该项目探讨了如何利用非挥发性特征,该特征将新兴的NVM技术与传统的记忆技术区分开来,并使用新颖的应用来研究新的内存架构设计。该项目的目的是推进各种计算机系统的内存架构设计,并全面探索NVM技术范围内的NVM技术层面和系统级别,系统和系统,系统,系统,系统,系统,系统,系统,系统,系统和系统。为此,该项目探讨了各种类型的计算机系统的设计空间,范围从裂缝到嵌入式系统。 特别是,该项目识别并解决了非易失性高速缓存架构中的设计问题,重新构造主要记忆结构以利用非挥发性特征来提高系统性能和能源消耗,在各种新兴NVM技术中支持持续的内存系统,并为这些NVM技术提供了近乎DATA的技术。预计这项研究的成功结果将提供设计指南,以实现大容量和快速宽度的非易失性内存/存储,这超出了当前的最新时间。因此,这项研究将产生涉及数据计算的新应用程序,例如,数据挖掘,机器学习,视觉或听觉感觉数据识别,生物信息学等。该奖项反映了NSF的法定任务,并被认为是通过基金会的知识功能和广泛的影响来评估CRITERIA的智力功能和广泛影响。
项目成果
期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
MEDAL: Scalable DIMM based Near Data Processing Accelerator for DNA Seeding Algorithm
- DOI:10.1145/3352460.3358329
- 发表时间:2019-10
- 期刊:
- 影响因子:0
- 作者:Wenqin Huangfu;Xueqi Li;Shuangchen Li;Xing Hu;P. Gu;Yuan Xie
- 通讯作者:Wenqin Huangfu;Xueqi Li;Shuangchen Li;Xing Hu;P. Gu;Yuan Xie
A Survey of Accelerator Architectures for Deep Neural Networks
- DOI:10.1016/j.eng.2020.01.007
- 发表时间:2020-03-01
- 期刊:
- 影响因子:12.8
- 作者:Chen, Yiran;Xie, Yuan;Tang, Tianqi
- 通讯作者:Tang, Tianqi
Rescuing RRAM-Based Computing From Static and Dynamic Faults
- DOI:10.1109/tcad.2020.3037316
- 发表时间:2021-10-01
- 期刊:
- 影响因子:2.9
- 作者:Lin, Jilan;Wen, Cheng-Da;Xie, Yuan
- 通讯作者:Xie, Yuan
Improving Streaming Graph Processing Performance using Input Knowledge
- DOI:10.1145/3466752.3480096
- 发表时间:2021-10
- 期刊:
- 影响因子:0
- 作者:Abanti Basak;Zheng Qu;Jilan Lin;Alaa R. Alameldeen;Zeshan A. Chishti;Yufei Ding;Yuan Xie
- 通讯作者:Abanti Basak;Zheng Qu;Jilan Lin;Alaa R. Alameldeen;Zeshan A. Chishti;Yufei Ding;Yuan Xie
Overcoming the Memory Hierarchy Inefficiencies in Graph Processing Applications
克服图形处理应用程序中内存层次结构的低效率
- DOI:10.1109/iccad51958.2021.9643434
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Lin, Jilan;Li, Shuangchen;Ding, Yufei;Xie, Yuan
- 通讯作者:Xie, Yuan
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yuan Xie其他文献
Stuck-at Fault Tolerance in RRAM Computing Systems
RRAM 计算系统中的卡住容错
- DOI:
10.1109/jetcas.2017.2776980 - 发表时间:
2018-03 - 期刊:
- 影响因子:4.6
- 作者:
Lixue Xia;Wenqin Huangfu;Tianqi Tang;Xiling Yin;Krishnendu Chakrabarty;Yuan Xie;Yu Wang;Huazhong Yang - 通讯作者:
Huazhong Yang
A TV-L1 Based Nonrigid Image Registration by CouplingParametric and Non-Parametric Transformation
基于TV-L1的参数化和非参数化耦合非刚性图像配准
- DOI:
10.1007/s11633-014-0874-6 - 发表时间:
2015 - 期刊:
- 影响因子:4.3
- 作者:
Wenrui Hu;Yuan Xie;Lin Li;Wensheng Zhang - 通讯作者:
Wensheng Zhang
Defective innate and adaptive immunity against enteric bacterial infection in Dock2 deficient mice
Dock2 缺陷小鼠针对肠道细菌感染的先天性和适应性免疫缺陷
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Yayun Chen;Lu Xie;Yuan Xie;Juanhua Zhu;Yangbin Liu;Zhiping Liu - 通讯作者:
Zhiping Liu
GEOcc: Geometrically Enhanced 3D Occupancy Network with Implicit-Explicit Depth Fusion and Contextual Self-Supervision
GEOcc:具有隐式-显式深度融合和上下文自我监督的几何增强 3D 占用网络
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Xin Tan;Wenbin Wu;Zhiwei Zhang;Chaojie Fan;Yong Peng;Zhizhong Zhang;Yuan Xie;Lizhuang Ma - 通讯作者:
Lizhuang Ma
Toward Increasing FPGA Lifetime
延长 FPGA 使用寿命
- DOI:
10.1109/tdsc.2007.70235 - 发表时间:
2008 - 期刊:
- 影响因子:7.3
- 作者:
S. Srinivasan;K. Ramakrishnan;P. Mangalagiri;Yuan Xie;N. Vijaykrishnan;M. J. Irwin;K. Sarpatwari - 通讯作者:
K. Sarpatwari
Yuan Xie的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yuan Xie', 18)}}的其他基金
SPX: Collaborative Research: Ula! - An Integrated Deep Neural Network (DNN) Acceleration Framework with Enhanced Unsupervised Learning Capability
SPX:合作研究:乌拉!
- 批准号:
1725447 - 财政年份:2017
- 资助金额:
$ 24.9万 - 项目类别:
Standard Grant
II-New: RICARDO: Research Infrastructure for Circuit and Architecture Design with Emerging Technologies
II-新:RICARDO:利用新兴技术进行电路和架构设计的研究基础设施
- 批准号:
1730309 - 财政年份:2017
- 资助金额:
$ 24.9万 - 项目类别:
Standard Grant
XPS: FULL: DSD: Collaborative Research: Parallelizing and Accelerating Metagenomic Applications
XPS:完整:DSD:协作研究:并行化和加速宏基因组应用
- 批准号:
1533933 - 财政年份:2015
- 资助金额:
$ 24.9万 - 项目类别:
Standard Grant
SHF: Medium: ASKS - Architecture Support for darK Silicon
SHF:中:ASKS - 对 darK Silicon 的架构支持
- 批准号:
1409798 - 财政年份:2014
- 资助金额:
$ 24.9万 - 项目类别:
Standard Grant
SHF: Small: Collaborative Research: STEMS: STatistic Emerging Memory Simulator
SHF:小型:协作研究:STEMS:统计新兴内存模拟器
- 批准号:
1461698 - 财政年份:2014
- 资助金额:
$ 24.9万 - 项目类别:
Standard Grant
SHF: Medium: ASKS - Architecture Support for darK Silicon
SHF:中:ASKS - 对 darK Silicon 的架构支持
- 批准号:
1500848 - 财政年份:2014
- 资助金额:
$ 24.9万 - 项目类别:
Standard Grant
SHF: Small: Collaborative Research: STEMS: STatistic Emerging Memory Simulator
SHF:小型:协作研究:STEMS:统计新兴内存模拟器
- 批准号:
1218867 - 财政年份:2012
- 资助金额:
$ 24.9万 - 项目类别:
Standard Grant
ADAMS: Architecture and Design Automation for 3D Multi-core Systems
ADAMS:3D 多核系统的架构和设计自动化
- 批准号:
0903432 - 财政年份:2009
- 资助金额:
$ 24.9万 - 项目类别:
Standard Grant
CSR: Medium: Collaborative Research: Providing Predictable Timing for Task Migration in Embedded Multi-Core Environments (TiME-ME)
CSR:中:协作研究:为嵌入式多核环境中的任务迁移提供可预测的时序 (TiME-ME)
- 批准号:
0905365 - 财政年份:2009
- 资助金额:
$ 24.9万 - 项目类别:
Continuing Grant
Student Travel Support for International Symposium on High-Performance Computer Architecture (HPCA) 2010
2010 年高性能计算机架构 (HPCA) 国际研讨会的学生旅行支持
- 批准号:
0952841 - 财政年份:2009
- 资助金额:
$ 24.9万 - 项目类别:
Standard Grant
相似国自然基金
基于超宽频技术的小微型无人系统集群协作关键技术研究与应用
- 批准号:
- 批准年份:2020
- 资助金额:57 万元
- 项目类别:面上项目
异构云小蜂窝网络中基于协作预编码的干扰协调技术研究
- 批准号:61661005
- 批准年份:2016
- 资助金额:30.0 万元
- 项目类别:地区科学基金项目
密集小基站系统中的新型接入理论与技术研究
- 批准号:61301143
- 批准年份:2013
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
ScFVCD3-9R负载Bcl-6靶向小干扰RNA治疗EAMG的试验研究
- 批准号:81072465
- 批准年份:2010
- 资助金额:31.0 万元
- 项目类别:面上项目
基于小世界网络的传感器网络研究
- 批准号:60472059
- 批准年份:2004
- 资助金额:21.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
- 批准号:
2331302 - 财政年份:2024
- 资助金额:
$ 24.9万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
- 批准号:
2331301 - 财政年份:2024
- 资助金额:
$ 24.9万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
- 批准号:
2412357 - 财政年份:2024
- 资助金额:
$ 24.9万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: Technical Debt Management in Dynamic and Distributed Systems
合作研究:SHF:小型:动态和分布式系统中的技术债务管理
- 批准号:
2232720 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: Quasi Weightless Neural Networks for Energy-Efficient Machine Learning on the Edge
合作研究:SHF:小型:用于边缘节能机器学习的准失重神经网络
- 批准号:
2326895 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别:
Standard Grant