Collaborative Research: Second-Order Variational Analysis in Structured Optimization and Algorithms with Applications

合作研究:结构化优化中的二阶变分分析及算法及其应用

基本信息

  • 批准号:
    1816449
  • 负责人:
  • 金额:
    $ 9.91万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-09-01 至 2021-08-31
  • 项目状态:
    已结题

项目摘要

This project focuses on developing advanced tools of mathematical analysis to investigate modern structured optimization problems and building efficient algorithms to solve them. These problems arise in different areas of science and engineering, including massive data analysis, machine learning, signal processing, medical image reconstruction, statistics, traffic and logistical networks, and operations research. Most of them share the irregular phenomenon of nonsmoothness or nonconvexity that challenges computation. Despite several practically successful algorithms recently proposed to solve such problems, the underlying fundamental theory is not quite understood and explored. Only analyzing the complexity and the deep mathematics behind these problems and algorithms provides practitioners across related, vital science and engineering areas new tools to comprehend their core features, be able to design more efficient algorithms, and attack more challenging problems arising from practice. The investigators develop such tools via a novel approach from a relatively young subfield of applied mathematics, variational analysis, which is naturally compatible with these nonsmooth and complex structures. Several topics from this project are integrated with teaching topic courses and training of students. This project is devoted to developing the theory of second-order variational analysis (SOVA) and using it to study the stability, sensitivity, and computational complexity of algorithms for solving structured optimization problems. The first part of this project serves as the theoretical foundation; it concerns the theory of SOVA with connections to stability and sensitivity analysis. More specifically, the investigators intend to study: (i) tilt stability and full stability for general optimization problems with connections to Robinson's strong regularity and Kojima's strong stability for conic programming via SOVA; (ii) metric (sub)regularity of the subdifferential and Kurdyka-Lojasiewicz property on nonsmooth (possibly nonconvex) functions via SOVA; and (iii) stability for parametric variational systems including Nash equilibrium systems and variational inequalities via SOVA. The second part of this project consists of designing and analyzing proximal algorithms for solving convex and nonconvex structured problems. Immediate applications include Lasso, group Lasso, elastic net, basic pursuit, sparsity, low-rank problems, and completion matrix problems that originate from compressed sensing, image reconstruction, machine learning, and data science. Stability theory developed in the first part plays a significant role here, especially in the complexity analysis of these algorithms. It explains why the development of many recent proximal algorithms is strongly influenced by the hidden power of SOVA. The specific objectives of this part are: (i) to accelerate the forward-backward splitting method and analyze the phenomenon of linear convergence encountered frequently in numerical experiments; and (ii) to design efficient methods of Douglas-Rachford splitting type for solving nonconvex optimization and feasibility problems. Other important applications include inverse problems corrupted by Poisson noise and total variation denoising models, both of which are well recognized in imaging science and statistical learning.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目的重点是开发先进的数学分析工具来研究现代结构化优化问题并构建有效的算法来解决这些问题。这些问题出现在科学和工程的不同领域,包括海量数据分析、机器学习、信号处理、医学图像重建、统计学、交通和物流网络以及运筹学。它们中的大多数都具有非平滑或非凸的不规则现象,这对计算提出了挑战。尽管最近提出了几种实际成功的算法来解决此类问题,但其基本理论尚未得到充分理解和探索。只有分析这些问题和算法背后的复杂性和深层数学,才能为相关的重要科学和工程领域的从业者提供新的工具来理解其核心特征,能够设计更有效的算法,并解决实践中出现的更具挑战性的问题。研究人员通过一种来自应用数学相对年轻的子领域——变分分析的新颖方法开发了此类工具,该方法自然与这些非光滑和复杂的结构兼容。该项目的几个主题与主题课程的教学和学生的培训相结合。 该项目致力于发展二阶变分分析(SOVA)理论,并用它来研究解决结构化优化问题的算法的稳定性、灵敏度和计算复杂性。该项目的第一部分作为理论基础;它涉及与稳定性和敏感性分析相关的 SOVA 理论。更具体地说,研究人员打算研究:(i)一般优化问题的倾斜稳定性和完全稳定性,与通过 SOVA 进行圆锥规划的 Robinson 强正则性和 Kojima 强稳定性有关; (ii) 通过 SOVA 计算非光滑(可能是非凸)函数的次微分和 Kurdyka-Lojasiewicz 性质的度量(次)正则性; (iii) 参数变分系统的稳定性,包括纳什均衡系统和通过 SOVA 的变分不等式。该项目的第二部分包括设计和分析用于解决凸和非凸结构化问题的近似算法。直接应用包括套索、群套索、弹性网络、基本追踪、稀疏性、低秩问题和源自压缩感知、图像重建、机器学习和数据科学的完成矩阵问题。第一部分中提出的稳定性理论在这里发挥着重要作用,特别是在这些算法的复杂性分析中。它解释了为什么许多最近的近端算法的发展受到 SOVA 隐藏功能的强烈影响。这部分的具体目标是:(i)加速前向后向分裂方法并分析数值实验中经常遇到的线性收敛现象; (ii) 设计有效的 Douglas-Rachford 分裂型方法来解决非凸优化和可行性问题。其他重要的应用包括泊松噪声和全变分去噪模型破坏的反问题,这两者在成像科学和统计学习中都得到了广泛认可。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优点和技术进行评估,被认为值得支持。更广泛的影响审查标准。

项目成果

期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On the circumcentered-reflection method for the convex feasibility problem
凸可行性问题的外心反射法
  • DOI:
    10.1007/s11075-020-00941-6
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    2.1
  • 作者:
    Behling, Roger;Bello-Cruz, Yunier;Santos, Luiz-Rafael
  • 通讯作者:
    Santos, Luiz-Rafael
The circumcentered-reflection method achieves better rates than alternating projections
外心反射方法比交替投影获得更好的速率
  • DOI:
    10.1007/s10589-021-00275-6
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    2.2
  • 作者:
    Arefidamghani, Reza;Behling, Roger;Bello-Cruz, Yunier;Iusem, Alfredo N.;Santos, Luiz-Rafael
  • 通讯作者:
    Santos, Luiz-Rafael
On inexact projected gradient methods for solving variable vector optimization problems
求解变向量优化问题的不精确投影梯度法
  • DOI:
    10.1007/s11081-020-09579-8
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    2.1
  • 作者:
    Bello-Cruz, J. Y.;Bouza Allende, G.
  • 通讯作者:
    Bouza Allende, G.
Conditional Extragradient Algorithms for Solving Variational Inequalities
求解变分不等式的条件超梯度算法
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0.2
  • 作者:
    Bello Cruz, Yunier;Diaz Millan, R.;Phan, H.M.
  • 通讯作者:
    Phan, H.M.
On the Linear Convergence of Forward–Backward Splitting Method: Part I—Convergence Analysis
前向-后向分裂法的线性收敛性:第一部分-收敛性分析
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yunier Bello Cruz其他文献

Optimal rates of convergence of matrices with applications
矩阵与应用的最佳收敛率
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Heinz H. Bauschke;Yunier Bello Cruz;T. Nghia;Hung M. Phan;Xianfu Wang
  • 通讯作者:
    Xianfu Wang
Circumcentric directions of cones
圆锥体的圆心方向
  • DOI:
    10.1007/s11590-022-01923-4
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    1.6
  • 作者:
    R. Behling;Yunier Bello Cruz;H. Lara;H. Oviedo;L. Santos
  • 通讯作者:
    L. Santos
On the convergence of the proximal forward-backward splitting method with linesearches
近端前向后向分裂方法与线搜索的收敛性研究
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yunier Bello Cruz;T. Nghia
  • 通讯作者:
    T. Nghia
Subgradient algorithms for solving variable inequalities
求解变量不等式的次梯度算法
A Subgradient-Like Algorithm for Solving Vector Convex Inequalities
求解向量凸不等式的类次梯度算法
  • DOI:
    10.1007/s10957-013-0300-1
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yunier Bello Cruz;L. R. L. Pérez
  • 通讯作者:
    L. R. L. Pérez

Yunier Bello Cruz的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yunier Bello Cruz', 18)}}的其他基金

Design and Analysis of Algorithms for Structured Optimization
结构化优化算法的设计与分析
  • 批准号:
    2307328
  • 财政年份:
    2023
  • 资助金额:
    $ 9.91万
  • 项目类别:
    Standard Grant

相似国自然基金

单原子纳米酶的第二配位球调制及其抗肿瘤性能研究
  • 批准号:
    52302342
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
测序用生物双孔第二感应区的锥形锐化研究
  • 批准号:
    32371526
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
劳伦板块西缘寒武纪第二世—苗岭世腕足动物研究
  • 批准号:
    42302010
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
苏北-鲁东地区寒武纪第二世-芙蓉世乳孔贝类腕足动物研究
  • 批准号:
    42302009
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
强磁场用第二代高温超导带材的磁通钉扎及在场性能提升研究
  • 批准号:
    52307026
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: A longitudinal approach to examining perception-production links in second language speech sound learning.
协作研究:检查第二语言语音学习中感知-产生联系的纵向方法。
  • 批准号:
    2309561
  • 财政年份:
    2023
  • 资助金额:
    $ 9.91万
  • 项目类别:
    Standard Grant
Collaborative Research: A longitudinal approach to examining perception-production links in second language speech sound learning.
协作研究:检查第二语言语音学习中感知-产生联系的纵向方法。
  • 批准号:
    2414107
  • 财政年份:
    2023
  • 资助金额:
    $ 9.91万
  • 项目类别:
    Standard Grant
Multi-Channel Communication for Improvements in Cancer Education and Outcomes (MICEO) in Underserved Populations
多渠道沟通以改善服务不足人群的癌症教育和结果 (MICEO)
  • 批准号:
    10892444
  • 财政年份:
    2023
  • 资助金额:
    $ 9.91万
  • 项目类别:
Collaborative Research: CNS Core: Small: NV-RGRA: Non-Volatile Nano-Second Right-Grained Reconfigurable Architecture for Data-Intensive Machine Learning and Graph Computing
合作研究:CNS 核心:小型:NV-RGRA:用于数据密集型机器学习和图计算的非易失性纳秒右粒度可重构架构
  • 批准号:
    2228239
  • 财政年份:
    2022
  • 资助金额:
    $ 9.91万
  • 项目类别:
    Standard Grant
Collaborative Research: Associations between climate shifts and ammonoid turnover across second-tier extinctions during the early Late Cretaceous greenhouse
合作研究:晚白垩世早期温室期间气候变化与二级灭绝中的菊石周转之间的关联
  • 批准号:
    2129628
  • 财政年份:
    2022
  • 资助金额:
    $ 9.91万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了