Development of tunnel field effect optoelectronic devices based on stacked 2D crystals with clean interfaces

基于具有干净界面的堆叠二维晶体的隧道场效应光电器件的开发

基本信息

  • 批准号:
    1810453
  • 负责人:
  • 金额:
    $ 37.39万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-09-01 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

Nontechnical:Optical communication is based on converting electrical signals into optical signals by optoelectronic devices such as lasers and photodiodes. Devices based on conventional semiconductors such as silicon are reaching the ultimate limits for performance. New materials and structures are required to advance the state of the art. The discovery of graphene, a two-dimensional (2D) layer of carbon, shows how new electronic properties emerge when a bulk material is thinned down to a single layer. Other 2D materials include boron nitride, black phosphorous, and transition metal dichalcogenides. Different 2D materials can be assembled one layer at a time into vertically stacked thin films. Such heterostructures can achieve functions and performance not possible with a single material. The interface between different 2D materials is critical to maintaining the unique properties that make them attractive for device applications. The principal investigator will use a newly developed clean-transfer method to prepare 2D heterostructure materials with clean interfaces. A custom-built scanning probe microscope with nanometer-scale light sources at the tip will be used to study the optical and electronic properties of devices with unprecedented resolution. Results from this project will enrich the understanding of these materials and accelerate the development of nanoscale optoelectronics. This interdisciplinary project will integrate research into education of graduate and undergraduate students in material science, engineering, and nanomanufacturing. This project will also seek to broaden participation in science, technology, engineering and mathematics.Technical:This proposal will combine novel 2D-heterostructure material preparation techniques, near-field scanning optics microscopy and near-field scanning photocurrent microscopy to investigate the fundamental optoelectronic properties and photocarrier behaviors in van der Waals material-based heterostructures. The photocurrent imaging with high spatial resolution, below 10nm, can reveal rich physics in nanoscale features. These include local pn-junctions, domain boundaries, edges, dopants, and strains. Imaging such features can significantly improve the understanding and enhance the control of the electronic and photonic properties of this new material system. The objectives of this project are to: (1) demonstrate a prototype tapping-mode near-field scanning photocurrent microscopy to investigate heterostructure devices, (2) improve the spatial resolution of scanning photocurrent imaging technique to sub-10nm level, and (3) study the photoresponsivity of vertically-stacked heterostructures based on graphene, boron nitrides, transmission metal dichalcogenides such as WSe2, MoS2, and MoSe2, and (4) develop fundamental understanding of the roles of nanoscale features, such as edge terminations and interlayer defect formation on the optoelectronic properties.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术:光通信基于将电信号转换为光电设备(例如激光器和光电二极管)的光学信号。基于常规半导体(例如硅)的设备达到了性能的最终限制。需要新的材料和结构来推进最新技术。石墨烯(二维(2D)碳的发现)显示,当将散装物质变细到单层时,新的电子特性如何出现。其他2D材料包括硝酸硼,黑磷和过渡金属二核苷。可以将不同的2D材料一次组装成垂直堆叠的薄膜。这样的异质结构可以通过单个材料实现功能和性能。不同2D材料之间的接口对于维护使它们对设备应用程序有吸引力的独特属性至关重要。首席研究人员将使用新开发的清洁转移方法来准备具有干净界面的2D异质结构材料。尖端的定制扫描探针显微镜将使用纳米尺度的光源来研究具有前所未有的分辨率的设备的光学和电子性能。 该项目的结果将丰富对这些材料的理解,并加速纳米级光电学的发展。这个跨学科项目将整合材料科学,工程和纳米制造业研究生和本科生的教育研究。 This project will also seek to broaden participation in science, technology, engineering and mathematics.Technical:This proposal will combine novel 2D-heterostructure material preparation techniques, near-field scanning optics microscopy and near-field scanning photocurrent microscopy to investigate the fundamental optoelectronic properties and photocarrier behaviors in van der Waals material-based heterostructures.具有高空间分辨率(低于10nm)的光电流成像可以揭示纳米级特征的丰富物理。这些包括局部PN界面,域边界,边缘,掺杂剂和菌株。成像这种特征可以显着提高对该新材料系统的电子和光子性能的理解和控制。该项目的目标是:(1)演示一种原型敲击模式近场扫描光电流显微镜研究异质结构设备,(2)改善扫描光电流成像技术的空间分辨率到子10Nm水平,以及(3)研究基于垂直堆积的heterostructions的光接种率的heterenene net烯,boror nm诸如WSE2,MOS2和MOSE2之类的二分法以及(4)对纳米级特征的作用进行了基本了解,例如边缘终止和层间缺陷形成在光电属性上。这项奖项反映了NSF的法定任务,反映了通过使用基金会和广泛的Intfactial and Intfactial and Intfactial and Intfactial和BroadIrial and Intif and Intivial和BroadIriatial和BroadIrit和BroadIrit and Intif。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Recent advances in tip-enhanced Raman spectroscopy probe designs
  • DOI:
    10.1007/s12274-022-5220-7
  • 发表时间:
    2022-12-27
  • 期刊:
  • 影响因子:
    9.9
  • 作者:
    Xu,Da;Liang,Boqun;Liu,Ming
  • 通讯作者:
    Liu,Ming
High external-efficiency nanofocusing for lens-free near-field optical nanoscopy
  • DOI:
    10.1038/s41566-019-0456-9
  • 发表时间:
    2019-09-01
  • 期刊:
  • 影响因子:
    35
  • 作者:
    Kim, Sanggon;Yu, Ning;Yan, Ruoxue
  • 通讯作者:
    Yan, Ruoxue
Physics-Guided Neural-Network-Based Inverse Design of a Photonic – Plasmonic Nanodevice for Superfocusing
用于超聚焦的光子-等离子体纳米器件的物理引导基于神经网络的逆向设计
  • DOI:
    10.1021/acsami.2c05083
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    9.5
  • 作者:
    Liang, Boqun;Xu, Da;Yu, Ning;Xu, Yaodong;Ma, Xuezhi;Liu, Qiushi;Asif, M. Salman;Yan, Ruoxue;Liu, Ming
  • 通讯作者:
    Liu, Ming
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ming Liu其他文献

Financial Conglomeration, IPO Underwriting, and Allocation in Japan
日本的金融集团、IPO承销和分配
  • DOI:
    10.2139/ssrn.3004190
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Takatoshi Hiraki;Toshiki Honda;Akitoshi Ito;Ming Liu
  • 通讯作者:
    Ming Liu
A flexible object tracking system for planary motion
用于平面运动的灵活对象跟踪系统
The berth allocation optimisation with the consideration of time-varying water depths
考虑时变水深的泊位分配优化
Robust Analysis and Weighting on MFCC Components for Speech Recognition and Speaker Identification
用于语音识别和说话人识别的 MFCC 组件的稳健分析和加权
Lymphoepithelioma-like carcinoma of the upper urinary tract: A systematic review of case reports
上尿路淋巴上皮瘤样癌:病例报告的系统回顾
  • DOI:
    10.12998/wjcc.v8.i4.771
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    1.1
  • 作者:
    S. Lai;S. Seery;Wei Zhang;Ming Liu;Guangzhi Zhang;Jianye Wang
  • 通讯作者:
    Jianye Wang

Ming Liu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ming Liu', 18)}}的其他基金

Collaborative Research: CNS Core: Medium: Programmable Disaggregated Storage
合作研究:CNS 核心:媒介:可编程分类存储
  • 批准号:
    2212192
  • 财政年份:
    2022
  • 资助金额:
    $ 37.39万
  • 项目类别:
    Continuing Grant
CAREER: Advanced Optical and Electrical Characterization of Novel Van der Waals Heterostructure Materials
职业:新型范德华异质结构材料的高级光学和电学表征
  • 批准号:
    1654746
  • 财政年份:
    2017
  • 资助金额:
    $ 37.39万
  • 项目类别:
    Continuing Grant
Earth Sciences Postdoctoral Research Fellowship Award
地球科学博士后研究奖学金
  • 批准号:
    9404244
  • 财政年份:
    1994
  • 资助金额:
    $ 37.39万
  • 项目类别:
    Fellowship Award
The Distributed Loop Computer Network
分布式循环计算机网络
  • 批准号:
    7723496
  • 财政年份:
    1978
  • 资助金额:
    $ 37.39万
  • 项目类别:
    Standard Grant

相似国自然基金

局部液化场地条件下城市盾构隧道地震韧性研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
局部液化场地条件下城市盾构隧道地震韧性研究
  • 批准号:
    52278384
  • 批准年份:
    2022
  • 资助金额:
    54.00 万元
  • 项目类别:
    面上项目
复杂深厚不均匀场地海底盾构隧道非线性地震效应机理研究
  • 批准号:
    52168044
  • 批准年份:
    2021
  • 资助金额:
    35 万元
  • 项目类别:
    地区科学基金项目
强震作用下不均匀场地长大地下隧道动力响应及抗震措施研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    24 万元
  • 项目类别:
    青年科学基金项目
软土场地盾构隧道纵向地震反应特性与损伤机理研究
  • 批准号:
    51908237
  • 批准年份:
    2019
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Development of High-performance Rectenna Diode for Mid-infrared / THz Optical Power Conversion
用于中红外/太赫兹光功率转换的高性能整流二极管的开发
  • 批准号:
    22KJ0239
  • 财政年份:
    2023
  • 资助金额:
    $ 37.39万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Development of tunnel field-effect transistor with steep switching based on dimensional control of density-of-state
基于态密度尺寸控制的陡峭开关隧道场效应晶体管的研制
  • 批准号:
    20K14797
  • 财政年份:
    2020
  • 资助金额:
    $ 37.39万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Development of Ultimate Low-Noise Magnetic Field Sensors Using Novel Sensing Layer in Magnetic Tunnel Junctions for Sensing-Driven Society
在磁隧道结中使用新型传感层开发终极低噪声磁场传感器,以实现传感驱动的社会
  • 批准号:
    19K15429
  • 财政年份:
    2019
  • 资助金额:
    $ 37.39万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Development of magnetic tunnel junctions having high perpendicular anisotropy field and study of its spin orbit torque.
高垂直各向异性场磁隧道结的研制及其自旋轨道力矩研究。
  • 批准号:
    17K14103
  • 财政年份:
    2017
  • 资助金额:
    $ 37.39万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Development of ferromagnetic tunnel junctions with a ferroelectric barrier layer and the control of their spin-transport by electric field effects
具有铁电势垒层的铁磁隧道结的开发及其通过电场效应控制其自旋输运
  • 批准号:
    26249037
  • 财政年份:
    2014
  • 资助金额:
    $ 37.39万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了