Collaborative Research: Decoding and encoding mechanistic relations between structure and function in crack resistance of articular cartilage and cartilage inspired biomaterials.
合作研究:解码和编码关节软骨和软骨启发生物材料的抗裂结构和功能之间的机械关系。
基本信息
- 批准号:1808026
- 负责人:
- 金额:$ 25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-07-15 至 2022-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Non-Technical SummaryArticular cartilage is a soft tissue which provides a smooth cushion and distributes mechanical load in joints. As a material, articular cartilage is remarkable. It is only a few millimeters thick, can routinely bear up to ten times one's body weight over 100-200 million loading cycles, and still avoids fracturing. The simultaneous strength, fracture resistance (toughness), and longevity of native articular cartilage remains unmatched in synthetic materials. Such properties are desperately needed for tissue engineering, tissue repair, and even soft robotics applications. The molecular mechanism underlying this exceptional toughness, however, is not well understood. This project will obtain an understanding of the underlying principles and mechanisms that lead to the toughness of articular cartilage, and provide criteria, as we do for cracks in airplane wings, for predicting the probability that initially untreated tears in cartilage will fracture further. The PIs will test the hypothesis that cartilage has such terrific properties due to the fact that it is comprised of two interweaving polymer networks, one which provides mechanical rigidity and one that provides dissipation. Moreover, this double network changes in composition with location in the tissue. These ideas will be tested using numerical simulation and comparison with experimental measurements of the tissue mechanical properties. Using this integrated approach, the PIs will elucidate mechanical structure-function relations underlying fracture toughness of articular cartilage (AC) which will lead to better predictions of cartilage mechanics and failure, and guide the design of new bioinspired materials. The project will provide insights into tissue failure, tissue repair therapies, and design principles for soft robotics. PIs will educate and train a new generation of scientists who understand physics, engineering, and biology, organize workshops aimed at teaching communication skills to graduate students, and promote diversity in STEM workforce. Technical SummaryArticular Cartilage (AC) is a soft tissue that covers the ends of bones to distribute mechanical load in joints. AC contains relatively few cells and its network-like extracellular matrix primarily determines its mechanical response. Its strength, toughness, and crack resistance are extremely high compared to synthetic materials, but the molecular mechanism underlying this exceptional toughness is not well understood. Given the heterogeneous, depth dependent, and multi-component structure and composition of AC, existing continuum descriptions are too coarse-grained to fully describe its fracture mechanics. The PIs will address this challenge by approaching cartilage fracture with a new structure function framework that combines rigidity percolation theory and microscale double-network hydrogel models, together with new confocal elastography experiments that can inform and interface with the model development. Using this integrated approach consisting of multi-scale mathematical modeling and state-of-the art experiments, they will test the hypothesis that the toughness of AC arises because (i) the reinforcing network state is in proximity to a mechanical phase transition allowing tunable mechanical response, and (ii) the tissue is a multi-component heterogeneous composite enabling novel response to stress and blunting of cracks. The project will obtain an understanding of the dependence of cracks on structure and composition of cartilage and similar soft tissues, as well as on loading conditions, and provide insights into tissue failure, and tissue repair therapies. More broadly, this new framework will enable novel and concrete predictions on how these structure, composition, and constitutive mechanical properties can be tuned to resist, and blunt cracks in biomimetic and engineered materials. PIs will educate and train a new generation of scientists who understand physics, engineering, and biology, and promote diversity in STEM workforce. Cohen and Bonassar will develop soft-skills curriculum units for graduate students and postdocs based on a recent science communication workshop held at Cornell by the Alan Alda Center for Communicating Science. Das will mentor minority and 1st generation students via RIT's McNair Program.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术摘要关节软骨是一种软组织,可提供光滑的缓冲垫并分散关节中的机械负荷。作为一种材料,关节软骨是非凡的。它的厚度只有几毫米,通常可以在 100-2 亿次负载循环中承受十倍于人体重量的重量,并且仍然可以避免破裂。天然关节软骨的强度、抗断裂性(韧性)和寿命在合成材料中仍然是无与伦比的。组织工程、组织修复甚至软机器人应用迫切需要这些特性。然而,这种特殊韧性背后的分子机制尚不清楚。该项目将了解导致关节软骨韧性的基本原理和机制,并提供标准,就像我们对飞机机翼裂缝所做的那样,用于预测最初未经处理的软骨撕裂进一步断裂的可能性。 PI 将测试软骨具有如此出色特性的假设,因为它由两种交织的聚合物网络组成,一种提供机械刚性,另一种提供耗散。此外,这种双网络的成分随着组织中的位置而变化。这些想法将通过数值模拟并与组织机械性能的实验测量进行比较来进行测试。使用这种集成方法,PI 将阐明关节软骨 (AC) 断裂韧性的机械结构-功能关系,这将有助于更好地预测软骨力学和失效,并指导新型仿生材料的设计。该项目将提供对组织衰竭、组织修复疗法和软机器人设计原理的见解。 PI 将教育和培训了解物理、工程和生物学的新一代科学家,组织旨在教授研究生沟通技巧的研讨会,并促进 STEM 劳动力的多样性。技术摘要关节软骨 (AC) 是一种软组织,覆盖骨骼末端以分散关节的机械负荷。 AC 含有相对较少的细胞,其网络状的细胞外基质主要决定其机械响应。与合成材料相比,其强度、韧性和抗裂性极高,但这种卓越韧性背后的分子机制尚不清楚。鉴于 AC 的异质性、深度依赖性和多组分结构和成分,现有的连续体描述过于粗粒度,无法完全描述其断裂力学。 PI 将通过采用新的结构功能框架来解决软骨骨折问题,该框架结合了刚性渗流理论和微型双网络水凝胶模型,以及可以为模型开发提供信息和接口的新共焦弹性成像实验。使用这种由多尺度数学建模和最先进的实验组成的综合方法,他们将测试 AC 韧性之所以产生的假设,因为 (i) 增强网络状态接近机械相变,允许可调的机械相变。 (ii) 该组织是一种多组分异质复合材料,能够对应力和裂纹钝化产生新的响应。该项目将了解裂纹对软骨和类似软组织的结构和成分以及负载条件的依赖性,并提供对组织失效和组织修复疗法的见解。更广泛地说,这个新框架将能够对如何调整这些结构、成分和本构机械性能以抵抗和钝化仿生和工程材料中的裂纹提供新颖而具体的预测。 PI 将教育和培训了解物理、工程和生物学的新一代科学家,并促进 STEM 劳动力的多样性。科恩和博纳萨尔将根据艾伦阿尔达科学传播中心最近在康奈尔大学举办的科学传播研讨会,为研究生和博士后开发软技能课程单元。 Das 将通过 RIT 的 McNair 计划指导少数族裔和第一代学生。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优点和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Introduction to Active Matter
- DOI:10.1039/d0sm90137g
- 发表时间:2020-08-21
- 期刊:
- 影响因子:3.4
- 作者:Das, Moumita;Schmidt, Christoph F.;Murrell, Michael
- 通讯作者:Murrell, Michael
Reentrant rigidity percolation in structurally correlated filamentous networks
结构相关丝状网络中的可重入刚性渗透
- DOI:10.1103/physrevresearch.4.043152
- 发表时间:2022
- 期刊:
- 影响因子:4.2
- 作者:Michel, Jonathan;von Kessel, Gabriel;Jackson, Thomas Wyse;Bonassar, Lawrence J.;Cohen, Itai;Das, Moumita
- 通讯作者:Das, Moumita
Rigidity and fracture of biopolymer double networks
生物聚合物双网络的刚性和断裂
- DOI:10.1039/d1sm00802a
- 发表时间:2022
- 期刊:
- 影响因子:3.4
- 作者:Lwin, Pancy;Sindermann, Andrew;Sutter, Leo;Wyse Jackson, Thomas;Bonassar, Lawrence;Cohen, Itai;Das, Moumita
- 通讯作者:Das, Moumita
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Moumita Das其他文献
Compressive stress triggers fibroblasts spreading over cancer cells to generate carcinoma in situ organization
压缩应力触发成纤维细胞在癌细胞上扩散以产生原位癌组织
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:5.9
- 作者:
Fabien Bertillot;Laetitia Andrique;Carlos Ureña Martin;Olivier Zajac;L. de Plater;Michael M Norton;Aurélien Richard;K. Alessandri;Basile G. Gurchenkov;Florian Fage;A. Asnacios;Christophe Lamaze;Moumita Das;J. Maître;Pierre Nassoy;Danijela Matic Vignjevic - 通讯作者:
Danijela Matic Vignjevic
A kernel-enriched order-dependent nonparametric spatio-temporal process
核丰富的阶依赖非参数时空过程
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:2.3
- 作者:
Moumita Das;S. Bhattacharya - 通讯作者:
S. Bhattacharya
An Encryption Key Distribution Strategy for Secure Sharing of Sensitive Information Using Blockchain Platforms in Construction Projects
在建筑项目中使用区块链平台安全共享敏感信息的加密密钥分发策略
- DOI:
10.46421/2706-6568.37.2020.paper026 - 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Jack C. P. Cheng;Xingyu Tao;Moumita Das - 通讯作者:
Moumita Das
Differentiation of melanoma from benign mimics using the relative‐color method
使用相对颜色法区分黑色素瘤和良性模仿瘤
- DOI:
- 发表时间:
2010 - 期刊:
- 影响因子:2.2
- 作者:
R. LeAnder;P. Chindam;Moumita Das;S. Umbaugh - 通讯作者:
S. Umbaugh
Moringa oleifera and its application in dental conditions: A systematic review and meta-analysis
辣木及其在牙科疾病中的应用:系统评价和荟萃分析
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Moumita Das;N. Panda;Ruchi Bhuyan;S. Bhuyan - 通讯作者:
S. Bhuyan
Moumita Das的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Moumita Das', 18)}}的其他基金
Collaborative Research: Biomechanical mechanisms conferring wound resilience in single-celled organisms
合作研究:赋予单细胞生物伤口复原力的生物力学机制
- 批准号:
2317443 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: NSF Workshop on Models for Uncovering Rules and Unexpected Phenomena in Biological Systems (MODULUS)
合作研究:NSF 揭示生物系统规则和意外现象模型研讨会 (MODULUS)
- 批准号:
2232740 - 财政年份:2022
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: MODULUS:Decoding the Rules of Phase Separation in Bacterial Chromatin
合作研究:MODULUS:解码细菌染色质相分离规则
- 批准号:
2031179 - 财政年份:2021
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Living biotic-abiotic materials with temporally programmable actuation
合作研究:DMREF:具有临时可编程驱动的生物-非生物活性材料
- 批准号:
2118449 - 财政年份:2021
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: Bottom-up Construction of a Synthetic Neuron and Programmable Neuronal Network
合作研究:合成神经元和可编程神经元网络的自下而上构建
- 批准号:
1935277 - 财政年份:2019
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
相似国自然基金
融合多源生物信息-连续知识追踪解码-无关意图拒识机制的康复外骨骼人体运动意图识别研究
- 批准号:62373344
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
基于中国手语的肢体运动想象脑机接口解码研究
- 批准号:62306139
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向机器人辅助协同康复任务的双上肢连续运动学神经解码技术研究
- 批准号:62303211
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
聚焦超声多元空间编解码的深部脑刺激触点电流反馈机制及调控方法研究
- 批准号:82302340
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
Cas14精准解码规律研究及其在转录因子高灵敏生物传感中的应用
- 批准号:22304083
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: Decoding thermal and magmatic history of mafic and ultramafic rocks through systematic studies of cation diffusion in pyroxene
合作研究:通过系统研究辉石中的阳离子扩散来解码镁铁质和超镁铁质岩石的热和岩浆历史
- 批准号:
2147598 - 财政年份:2022
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
Collaborative Research: Decoding thermal and magmatic history of mafic and ultramafic rocks through systematic studies of cation diffusion in pyroxene
合作研究:通过系统研究辉石中的阳离子扩散来解码镁铁质和超镁铁质岩石的热和岩浆历史
- 批准号:
2147603 - 财政年份:2022
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Medium: QODED: Quantum codes Optimized for the Dynamics between Encoded Computation and Decoding using Classical Coding Techniques
协作研究:CIF:中:QODED:针对使用经典编码技术的编码计算和解码之间的动态进行优化的量子代码
- 批准号:
2106213 - 财政年份:2021
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
Collaborative Research:SLINGSHOT:Decoding Dark Matter through Gravitational Lensing
合作研究:弹弓:通过引力透镜解码暗物质
- 批准号:
2108866 - 财政年份:2021
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: Decoding the Corrosion of Borate Glasses: From Fundamental Science to Quantitative Structure-Property Relationships
合作研究:解码硼酸盐玻璃的腐蚀:从基础科学到定量结构-性能关系
- 批准号:
2034871 - 财政年份:2021
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant