SemiSynBio: Collaborative Research: DNA-based Electrically Readable Memories

SemiSynBio:合作研究:基于 DNA 的电可读存储器

基本信息

  • 批准号:
    1807568
  • 负责人:
  • 金额:
    $ 40.12万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-07-15 至 2022-06-30
  • 项目状态:
    已结题

项目摘要

For decades engineers have aimed to develop a universal memory technology that was low cost, reliable, high density, and non-volatile. Ideally, this technology could be quickly written, read, or erased, and would last indefinitely in any defined state. However, current technologies have limited lifetimes, are often arduous to write, consume significant amounts of power, and are not capable of sustaining the current global data growth. Biological systems on the other hand, solved this problem billions of years ago using deoxyribonucleic acids (DNA) coupled with enzymatic methods for reading, writing, and erasing the data. In fact, the average human writes 40 exabytes of data each day while consuming comparatively little energy. Moreover, this data can be stored for hundreds or thousands of years. Thus, DNA represents a unique and interesting platform for developing memory technologies for the next generation of electronic devices. However, in order to leverage its phenomenal storage capabilities and become a viable memory technology contender, a number of important technical and fundamental hurdles must be examined and overcome. As an initial step toward this goal, this proposal aims to create a DNA-based Read-Only Memory (ROM) that can be patterned, placed, and programmed as desired, can be read electrically, and is capable of interfacing with conventional semiconductor electronics for long-term data storage and retrieval. To achieve this goal, we have established a collaborative, multidisciplinary team working at the nexus of biological systems electrical and computer engineering and charge transport physics. This Team has expertise in the control and assembly of DNA nanostructures, nano- and molecular electronic systems, and the theory and modeling of nanoscale electronic devices. Together, this team will work with students and junior researchers to understand and control the charge transport properties of DNA-based nanostructures, to assemble DNA-based memory devices and circuits, to develop tools for modeling and programming these systems, and to train a new generation of scientists and engineers capable of working at the interface between biology and nano/electrical engineering. Graduate students involved in this project, will obtain interdisciplinary training involving electrical engineering, device physics, chemistry, biochemistry, and material science. In addition, this transdisciplinary research project is also integrated with an outreach program aimed at expanding the enrollment of under-represented minorities and female students in STEM fields, providing research experience for undergraduate students, and introducing K-12 students to cutting edge science and engineering problems. To fully harness the advantages of DNA for a general memory platform within semiconductor-based systems, it must be possible to access and read information from it electronically. To develop this translational capability, several technological and fundamental advances are required. It is the goal of this project to develop methods for creating an electrically readable DNA-based memory system. Specifically, this proposal aims: i) to optimize and control the charge transport properties of DNA-nanowires grown using bottom-up self-assembly techniques using a combination of molecular and ionic dopants, and templated growth of inorganic structures; ii) to develop design rules for creating DNA-based multi-level memory cells by examining the effects of sequence, structure, and length on the transport properties; iii) to combine this knowledge to develop DNA-based cross-wire (X-wire) read-only memory systems; iv) to develop predictive transport models to simulate the functionality of this memory architecture; and v) to develop Computer-Aided Design (CAD) tools that can be used to program the self-assembly of large-scale memory architectures. The success of this approach will create translational capabilities for carbon-based electronics, memory technologies, and DNA-based nano-assemblies, and the breadth of this project will result in new knowledge in a variety of realms. It will: i) enhance our fundamental understanding of the inherent charge transport properties of DNA; ii) provide insights into how to chemically control these properties to achieve the desired electrical responses; iii) provide new insights into how to scale-up the self-assembly of DNA nanostructures; iv) aid the development of new CAD tools for modeling and controlling the assembly and addressability of DNA-based memories; v) provide foundational information about how to interface biological materials with conventional semiconductor technologies; vi) advance the utility of DNA self-assembly to a novel manufacturing platform for nanoscale electronic materials; vii) enable new methodologies for modeling transport in these bottom-up hybrid systems; and viii) provide information about novel memory architectures for next-generation computation. The knowledge developed in these areas will enable the design of carbon-based, nanoscale electronic devices with desired functionality from the bottom-up. And more generally, the success of this project will provide a broad, systematic framework that can be followed to develop unique electronic device paradigms for nanoscale electronic materials.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
数十年来,工程师的目的是开发一种低成本,可靠,密度和非挥发性的通用记忆技术。理想情况下,该技术可以快速编写,阅读或删除,并且可以在任何确定的状态下无限期地持续使用。但是,当前的技术的寿命有限,通常很难写,消耗大量的功率,并且无法维持当前的全球数据增长。另一方面,生物系统使用脱氧核糖核酸(DNA)以及酶促方法来读取,写作和删除数据。实际上,人类平均每天写40个数据,而消耗相对较少的能量。此外,这些数据可以存储数百年或数千年。因此,DNA代表了为下一代电子设备开发存储技术的独特而有趣的平台。但是,为了利用其惊人的存储能力并成为可行的记忆技术竞争者,必须检查和克服许多重要的技术和基本障碍。作为朝着这个目标迈出的第一步,该提案旨在创建一个基于DNA的读取记忆(ROM),可以根据需要进行图案,放置和编程,并可以进行电气读取,并能够与传统的半导体电子设备接口用于长期数据存储和检索。为了实现这一目标,我们建立了一个在生物系统电气和计算机工程纽带的合作,多学科团队,并充电运输物理。该团队在DNA纳米结构,纳米和分子电子系统以及纳米级电子设备的理论和建模方面具有专业知识。该团队将与学生和初级研究人员合作,了解和控制基于DNA的纳米结构的电荷运输特性,组装基于DNA的内存设备和电路,开发用于建模和编程这些系统的工具,并培训新的能够在生物学与纳米/电气工程之间的界面工作的科学家和工程师的产生。参与该项目的研究生将获得涉及电气工程,设备物理,化学,生物化学和材料科学的跨学科培训。此外,该跨学科研究项目还与旨在扩大代表性不足的少数民族和女学生在STEM领域的招生的外展计划集成在一起,为本科生提供研究经验,并向K-12学生介绍削减科学和工程的研究经验问题。为了完全利用DNA在基于半导体的系统中的一般内存平台的优势,必须通过电子方式访问和读取信息。为了发展这种翻译能力,需要几种技术和基本进步。该项目的目的是开发用于创建基于电气DNA的内存系统的方法。具体而言,该提案的目的是:i)使用自下而上的自组装技术优化和控制DNA纳米线的电荷传输特性,并使用分子和离子掺杂剂的组合以及无机结构的模板生长; ii)通过检查序列,结构和长度对传输属性的影响来制定设计规则,以创建基于DNA的多级记忆单元; iii)结合这些知识以开发基于DNA的跨线(X线)读取的内存系统; iv)开发预测传输模型以模拟此内存体系结构的功能; v)开发计算机辅助设计(CAD)工具,可用于编程大规模内存体系结构的自组装。这种方法的成功将为基于碳的电子,内存技术和基于DNA的纳米组件创造转化能力,并且该项目的广度将导致各种领域的新知识。它将:i)增强我们对DNA固有电荷运输特性的基本理解; ii)提供有关如何化学控制这些特性以实现所需的电响应的见解; iii)提供有关如何扩展DNA纳米结构自组装的新见解; iv)协助开发新的CAD工具来建模和控制基于DNA的记忆的组装和寻址性; v)提供有关如何将生物材料与常规半导体技术连接的基础信息; vi)将DNA自组装的实用性推向了纳米级电子材料的新型制造平台; vii)启用新方法,以建模这些自下而上的混合系统中的运输;和viii)提供有关下一代计算的新型内存体系结构的信息。在这些领域开发的知识将使基于自下而上的功能的碳基纳米级电子设备的设计。更一般地,该项目的成功将提供一个广泛的,系统的框架,可以遵循,以开发纳米级电子材料的独特电子设备范式。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识来评估的。优点和更广泛的影响审查标准。

项目成果

期刊论文数量(12)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Tunable DNA Origami Motors Translocate Ballistically Over μm Distances at nm/s Speeds
  • DOI:
    10.1002/anie.201916281
  • 发表时间:
    2020-04-01
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
    Bazrafshan, Alisina;Meyer, Travis A.;Salaita, Khalid
  • 通讯作者:
    Salaita, Khalid
DNA Origami Guided Self-Assembly of Plasmonic Polymers with Robust Long-Range Plasmonic Resonance
  • DOI:
    10.1021/acs.nanolett.0c04055
  • 发表时间:
    2020-12-09
  • 期刊:
  • 影响因子:
    10.8
  • 作者:
    Wang, Pengfei;Huh, Ji-Hyeok;Ke, Yonggang
  • 通讯作者:
    Ke, Yonggang
DNA‐Guided Assembly of Molecules, Materials, and Cells
  • DOI:
    10.1002/aisy.201900101
  • 发表时间:
    2019-12
  • 期刊:
  • 影响因子:
    7.4
  • 作者:
    Donglei Yang;Chunyan Zhou;Fei Gao;Pengfei Wang;Yonggang Ke
  • 通讯作者:
    Donglei Yang;Chunyan Zhou;Fei Gao;Pengfei Wang;Yonggang Ke
Dynamic DNA Structures
动态DNA结构
  • DOI:
    10.1002/smll.201900228
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    13.3
  • 作者:
    Zhang Yingwei;Pan Victor;Li Xue;Yang Xueqin;Li Haofei;Wang Pengfei;Ke Yonggang
  • 通讯作者:
    Ke Yonggang
Magnetic Plasmon Networks Programmed by Molecular Self‐Assembly
  • DOI:
    10.1002/adma.201901364
  • 发表时间:
    2019-05
  • 期刊:
  • 影响因子:
    29.4
  • 作者:
    Pengfei Wang;Ji‐Hyeok Huh;Jaewon Lee;Kwangjin Kim;Kyung Jin Park;Seungwoo Lee;Yonggang Ke
  • 通讯作者:
    Pengfei Wang;Ji‐Hyeok Huh;Jaewon Lee;Kwangjin Kim;Kyung Jin Park;Seungwoo Lee;Yonggang Ke
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yonggang Ke其他文献

Mechano-Cas12a Assisted Tension Sensor (MCATS) for Massively Amplified Cell Traction Force Measurements
Mechano-Cas12a 辅助张力传感器 (MCATS) 用于大规模放大的电池牵引力测量
  • DOI:
    10.1101/2022.10.26.513907
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yuxin Duan;F. Szlam;Yuesong Hu;Wenchun Chen;Renhao Li;Yonggang Ke;Roman Sniecinski;K. Salaita
  • 通讯作者:
    K. Salaita
RNA imaging in living mice enabled by an in vivo hybridization chain reaction circuit with a tripartite DNA probe
通过使用三方 DNA 探针的体内杂交链式反应电路实现活体小鼠 RNA 成像
  • DOI:
    10.1039/c9sc03469b
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    8.4
  • 作者:
    Han Wu;Ting-Ting Chen;Xiang-Nan Wang;Yonggang Ke;Jian-Hui Jiang
  • 通讯作者:
    Jian-Hui Jiang
Programming the Nucleation of DNA Brick Self-Assembly with a Seeding Strand
用种子链编程 DNA 砖自组装的成核
  • DOI:
    10.1002/anie.201915063
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yingwei Zhang;Aleks Reinhardt;Pengfei Wang;Jie Song;Yonggang Ke
  • 通讯作者:
    Yonggang Ke
Unraveling mechanotransduction in T cells with DNA nanotechnology
利用 DNA 纳米技术揭示 T 细胞的机械转导
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    15.7
  • 作者:
    Sierra A. Sterling;Yonggang Ke
  • 通讯作者:
    Yonggang Ke
Complex DNA Brick Assembly.
复杂的 DNA 砖组装。
  • DOI:
    10.1007/978-1-4939-6454-3_4
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Luvena L. Ong;Yonggang Ke
  • 通讯作者:
    Yonggang Ke

Yonggang Ke的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yonggang Ke', 18)}}的其他基金

CAREER: Control Information Transfer in Complex DNA Structures
职业:控制复杂 DNA 结构中的信息传递
  • 批准号:
    1654485
  • 财政年份:
    2017
  • 资助金额:
    $ 40.12万
  • 项目类别:
    Continuing Grant

相似国自然基金

基于交易双方异质性的工程项目组织间协作动态耦合研究
  • 批准号:
    72301024
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向5G超高清移动视频传输的协作NOMA系统可靠性研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向协作感知车联网的信息分发时效性保证关键技术研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
数据物理驱动的车间制造服务协作可靠性机理与优化方法研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
医保基金战略性购买促进远程医疗协作网价值共创的制度创新研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    45 万元
  • 项目类别:
    面上项目

相似海外基金

SemiSynBio: Collaborative Research: YeastOns: Neural Networks Implemented in Communicating Yeast Cells
SemiSynBio:合作研究:YeastOns:在酵母细胞通讯中实现的神经网络
  • 批准号:
    1807132
  • 财政年份:
    2018
  • 资助金额:
    $ 40.12万
  • 项目类别:
    Continuing Grant
SemiSynBio: Collaborative Research: Very Large-Scale Genetic Circuit Design Automation
SemiSynBio:合作研究:超大规模遗传电路设计自动化
  • 批准号:
    1807461
  • 财政年份:
    2018
  • 资助金额:
    $ 40.12万
  • 项目类别:
    Continuing Grant
SemiSynBio: Collaborative Research: Very Large-Scale Genetic Circuit Design Automation
SemiSynBio:合作研究:超大规模遗传电路设计自动化
  • 批准号:
    1807520
  • 财政年份:
    2018
  • 资助金额:
    $ 40.12万
  • 项目类别:
    Continuing Grant
SemiSynBio: Collaborative Research: Very Large-Scale Genetic Circuit Design Automation
SemiSynBio:合作研究:超大规模遗传电路设计自动化
  • 批准号:
    1849588
  • 财政年份:
    2018
  • 资助金额:
    $ 40.12万
  • 项目类别:
    Continuing Grant
SemiSynBio: Collaborative Research: DNA-based Electrically Readable Memories
SemiSynBio:合作研究:基于 DNA 的电可读存储器
  • 批准号:
    1807391
  • 财政年份:
    2018
  • 资助金额:
    $ 40.12万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了