Emerging Materials for Energy storage and environmental Research enabled through Atomic Layer Deposition, (EMERALD)

通过原子层沉积实现能源存储和环境研究的新兴材料(EMERALD)

基本信息

  • 批准号:
    1805084
  • 负责人:
  • 金额:
    $ 38万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-10-01 至 2021-09-30
  • 项目状态:
    已结题

项目摘要

There is a compelling need for an inexpensive, off-the-grid, technology in which solar energy is captured and used to produce a fuel - hydrogen - for heating and electricity when the sun does not shine and a disinfectant - hypochlorite (chemical formula NaOCl) - to create potable water. The worldwide need for potable water is great. A sixth of the world's population have no access to improved water supplies and far more consume contaminated water every day. This US-Republic of Ireland-Northern Ireland, United Kingdom research collaboration project involves harvesting the energy of sunlight to split saltwater into its chemical components: hydrogen, hypochlorite and another valuable product, caustic (NaOH). This technology is amenable to a modular system approach which would provide distributed power and potable water in areas with less infrastructure or during natural disasters. The project provides an international and multidisciplinary research experience for the involved students. The project also leverages Stanford's RISE outreach program to inspire students to consider further education and careers in the STEM fields using hands-on research experiences relevant to photovoltaics, motivated by the goal of advancing infrastructure in the developing world.This project is a multidisciplinary research project involving Stanford, Tyndall National Institute/University College Cork, Republic of Ireland and Queens University, Belfast, Northern Ireland United Kingdom. The collaboration involves multidisciplinary research on novel catalysts, corrosion protections layers for efficient earth-abundant light absorbers, and electrochemical cell design. Tasks will be performed on 1) new, inexpensive materials that enable efficient saltwater splitting, 2) methods for protecting silicon solar cell materials when they are exposed to saltwater, and 3) optimized designs for saltwater splitting devices. The project will investigate electrode materials selection and composition optimization, atomic layer deposition (ALD) methods to control local catalytic and electronic properties over highly porous electrodes, and the impact these factors have on cell efficiency and durability while minimizing platinum group metal use. The research will be related to two different devices, one an integrated and highly-efficient silicon photoelectrochemical cell, and the other an electrochemical cell which can be powered by an external photovoltaic array. A multiphysics modelling effort will inform the design details in order to optimize the cells for efficiency. Collectively, the team of researchers in the US, Ireland and Northern Ireland will assemble and test devices to demonstrate the performance and stability of the materials and device designs developed in this project.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在捕获太阳能并用来生产燃料 - 氢 - 用于加热和电力的廉价,离网的技术的迫切需要,当太阳不发光和消毒剂 - 次氯酸盐(化学配方naocl))产生可饮用的水。 全球对饮用水的需求很大。全世界的六分之一无法获得改善的水供应,并且每天消耗更多的水。英国爱尔兰北部爱尔兰北部爱尔兰研究的美国公共研究合作项目涉及将阳光的能量分为化学成分:氢,次氯酸盐和另一种有价值的产品,苛性含量(NAOH)。 该技术适合模块化系统方法,该方法将在基础设施较少或在自然灾害期间提供分布式功率和饮用水。该项目为参与学生提供了国际和多学科的研究经验。 The project also leverages Stanford's RISE outreach program to inspire students to consider further education and careers in the STEM fields using hands-on research experiences relevant to photovoltaics, motivated by the goal of advancing infrastructure in the developing world.This project is a multidisciplinary research project involving Stanford, Tyndall National Institute/University College Cork, Republic of Ireland and Queens University, Belfast, Northern Ireland United Kingdom.该协作涉及有关新型催化剂的多学科研究,腐蚀保护层,可为有效的地球吸收器以及电化学细胞设计。任务将在1)新的,廉价的材料上执行,以实现有效的盐水分裂,2)在暴露于盐水时保护硅太阳能电池材料的方法; 3)3)优化的盐水拆卸设备设计。 该项目将研究电极材料的选择和组成优化,原子层沉积(ALD)方法,以控制高度多孔电极的局部催化和电子特性,并且这些因素对细胞效率和耐用性的影响,同时最大程度地减少铂金属的使用。 这项研究将与两个不同的设备有关,一种将是一个集成且高效的硅光电化学细胞,另一个是一个可以由外部光伏阵列供电的电化学电池。多物理建模工作将为设计细节提供信息,以优化单元格的效率。总的来说,美国,爱尔兰和北爱尔兰的研究人员团队将组装和测试设备,以证明本项目中开发的材料和设备设计的性能和稳定性。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子优点和更广泛影响的审查标准来通过评估来支持的。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Reversible Decay of Oxygen Evolution Activity of Iridium Catalysts
  • DOI:
    10.1149/2.0491914jes
  • 发表时间:
    2019-10
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Robert Tang-Kong;C. Chidsey;P. McIntyre
  • 通讯作者:
    Robert Tang-Kong;C. Chidsey;P. McIntyre
>10% solar-to-hydrogen efficiency unassisted water splitting on ALD-protected silicon heterojunction solar cells
  • DOI:
    10.1039/c9se00110g
  • 发表时间:
    2019-05
  • 期刊:
  • 影响因子:
    5.6
  • 作者:
    Chor Seng Tan;Kyle W. Kemp;M. Braun;A. Meng;Wanliang Tan;C. Chidsey;W. Ma;F. Moghadam;P. McIntyre
  • 通讯作者:
    Chor Seng Tan;Kyle W. Kemp;M. Braun;A. Meng;Wanliang Tan;C. Chidsey;W. Ma;F. Moghadam;P. McIntyre
Silicon Photoanodes for Solar-Driven Oxidation of Brine: A Nanoscale, Photo-Active Analog of the Dimensionally-Stable Anode
  • DOI:
    10.1149/2.0791816jes
  • 发表时间:
    2018-12
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Robert Tang-Kong;C. O’Rourke;A. Mills;P. McIntyre
  • 通讯作者:
    Robert Tang-Kong;C. O’Rourke;A. Mills;P. McIntyre
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Paul McIntyre其他文献

Low temperature, high pressure thermo-physical and crystallographic properties of KZnF<sub>3</sub> perovskite
  • DOI:
    10.1016/j.matchemphys.2017.07.025
  • 发表时间:
    2017-09-15
  • 期刊:
  • 影响因子:
  • 作者:
    Kevin S. Knight;Craig L. Bull;Paul McIntyre
  • 通讯作者:
    Paul McIntyre

Paul McIntyre的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Paul McIntyre', 18)}}的其他基金

Defect Characterization and Control in Metastable GeSn Optoelectronic Alloy Nanostructures
亚稳态 GeSn 光电合金纳米结构的缺陷表征与控制
  • 批准号:
    2003266
  • 财政年份:
    2020
  • 资助金额:
    $ 38万
  • 项目类别:
    Standard Grant
Solute Trapping in Low-Temperature Vapor-Liquid-Solid Growth: A Route to Direct-Gap Ge-Sn Single Crystal Nanowires
低温气液固生长中的溶质捕获:直接带隙 Ge-Sn 单晶纳米线的途径
  • 批准号:
    1608927
  • 财政年份:
    2016
  • 资助金额:
    $ 38万
  • 项目类别:
    Standard Grant
Research into Emerging Nano-structured Electrodes for the splitting of Water (RENEW)
用于水分解的新兴纳米结构电极的研究(RENEW)
  • 批准号:
    1336844
  • 财政年份:
    2013
  • 资助金额:
    $ 38万
  • 项目类别:
    Standard Grant
Collaborative: Reliability of Ferroelectric Thin Films: A Systematic Study of Point Defect Phenomena and Local Electronic Structure Effects
合作:铁电薄膜的可靠性:点缺陷现象和局域电子结构效应的系统研究
  • 批准号:
    0205949
  • 财政年份:
    2002
  • 资助金额:
    $ 38万
  • 项目类别:
    Continuing Grant
FRG/GOALI: Degradation Mechanisms, Micromechanics, and Microstructural Engineering of Thin Film Electrodes for High Permittivity Dielectrics
FRG/GOALI:高介电常数电介质薄膜电极的降解机制、微力学和微结构工程
  • 批准号:
    0072134
  • 财政年份:
    2000
  • 资助金额:
    $ 38万
  • 项目类别:
    Continuing Grant
Electro-Migration of Oxygen Vacancies in Perovskite Thin Films
钙钛矿薄膜中氧空位的电迁移
  • 批准号:
    9974341
  • 财政年份:
    1999
  • 资助金额:
    $ 38万
  • 项目类别:
    Continuing Grant

相似国自然基金

准一维铬砷基超导材料电子关联动力学性质的第一性原理研究
  • 批准号:
    12304175
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
轻量化多功能因瓦合金多孔材料增材制造与性能表征评价
  • 批准号:
    12372133
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
非晶过渡金属多硫化物正极材料穿梭效应消除机制及其构效关系
  • 批准号:
    22309087
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
磁性金属@碗状介孔碳复合材料的可控构建及其宽频吸波机制研究
  • 批准号:
    52301192
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
可代谢调控弱碱性钠盐纳米材料的控制合成及其在增强癌症免疫治疗中的应用
  • 批准号:
    52372273
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

Stable catalytic materials for emerging energy conversion technologies and greenhouse gas mitigation
用于新兴能源转换技术和温室气体减排的稳定催化材料
  • 批准号:
    478979-2015
  • 财政年份:
    2017
  • 资助金额:
    $ 38万
  • 项目类别:
    Strategic Projects - Group
Fundamentals and applications of thermochemical conversion processes for emerging energy recovery technologies: novel materials, processing, and capture
新兴能源回收技术热化学转化过程的基础和应用:新型材料、加工和捕获
  • 批准号:
    262771-2013
  • 财政年份:
    2017
  • 资助金额:
    $ 38万
  • 项目类别:
    Discovery Grants Program - Individual
Fundamentals and applications of thermochemical conversion processes for emerging energy recovery technologies: novel materials, processing, and capture
新兴能源回收技术热化学转化过程的基础和应用:新型材料、加工和捕获
  • 批准号:
    262771-2013
  • 财政年份:
    2016
  • 资助金额:
    $ 38万
  • 项目类别:
    Discovery Grants Program - Individual
Stable catalytic materials for emerging energy conversion technologies and greenhouse gas mitigation
用于新兴能源转换技术和温室气体减排的稳定催化材料
  • 批准号:
    478979-2015
  • 财政年份:
    2016
  • 资助金额:
    $ 38万
  • 项目类别:
    Strategic Projects - Group
Experimental, analytical and numerical investigations of emerging materials for sensing, actuation and energy harvesting
用于传感、驱动和能量收集的新兴材料的实验、分析和数值研究
  • 批准号:
    239023-2010
  • 财政年份:
    2016
  • 资助金额:
    $ 38万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了