CAREER: First-Principles Predictive Theory and Microscopic Understanding of Nonlinear Light-Matter Interactions towards Designer Nonlinear Optical Materials
职业:设计非线性光学材料的非线性光与物质相互作用的第一原理预测理论和微观理解
基本信息
- 批准号:1753054
- 负责人:
- 金额:$ 43.95万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
NONTECHNICAL SUMMARYThe Division of Materials Research and the Office of Advanced Cyberinfrastructure contribute funds to this CAREER award. This award supports an integrated research and education effort on developing and applying computational methods for understanding how nonlinear optical materials respond to light. How nonlinear optical materials respond to light depends on the intensity of the light which leads to interesting phenomena that can be used in technological applications. For example, the dependence of the index of refraction on light intensity can cause a nonlinear optical material to function like a lens causing a light beam to narrow or collapse as it passes through the material. These materials have applications in, for example, noninvasive imaging for medicine, optoelectronic devices, and advanced sensitive quantum mechanical sensors. Understanding and accurate prediction of strong light-matter interaction at microscopic level would help enable the design of novel materials with tailored nonlinear optical properties for specific applications.The goal of this project is to develop and apply methods that starting from knowing the identity of the constituent atoms to predict how specific nonlinear optical materials will respond to light. Emphasis will be placed on novel two-dimensional materials and topological materials which can have metallic states with exotic properties that cover surfaces and edges of the material. This work will elucidate the fundamental role of symmetry, topology, surface/edge, and spin-orbit coupling in nonlinear light-matter interactions. The results obtained from this work will also help generate design principles for nonlinear optical materials and nanostructures. The methods and data acquired will be broadly disseminated to the scientific community, industry, and the general public through open-source distributions.To integrate outreach and education with the research, the PI will host and train high-school students from under-represented groups and secondary school teachers in scientific computing and simulations during summers. The PI will also integrate the research into undergraduate and graduate curricula, provide multidisciplinary training to undergraduate and graduate students, disseminate computational tools in computational materials science summer schools, and promote women in materials science and engineering through seminar series. The graduate students working on this project will acquire an interdisciplinary background in physics, materials science, and high-performance computing. The computer codes and data generated will be shared with the public to benefit the education and outreach in the community. TECHNICAL SUMMARYThe Division of Materials Research and the Office of Advanced Cyberinfrastructure contribute funds to this CAREER award. This award supports an integrated research and education effort on developing and applying predictive first-principles methods for understanding nonlinear optical responses of materials. Materials and nanostructures with tailored nonlinear optical properties are not only important for understanding, probing, and ultimately controlling light-matter interaction at the nanoscale, but highly desirable for many applications such as ultrafast nonlinear optics, biosensing, all-optical transistor and computer, and optical quantum teleportation, communication, and computing. Recently, giant nonlinear optical processes such as second and third harmonic generation were discovered in two-dimensional crystals and topological materials, which challenges the current understanding and requires fundamental investigation at the microscopic level. The goal of this project is to advance fundamental understanding and theoretical prediction of nonlinear light-matter interaction in materials. The research will focus on developing and applying first-principles density-functional-based methods and approaches to investigate and eventually predict second and third order nonlinear optical responses of materials. Spin-orbit coupling, crystalline symmetry, causality, electron-hole interaction, quasiparticle energy, and quasiparticle lifetime due to carrier-carrier and carrier-phonon interactions will be included in this first-principles theoretical framework. Particular emphasis will be placed on elucidating the role of symmetry, electronic topology, surface/edge, and spin-orbit coupling in two-dimensional materials and topological materials. The results obtained will generate new knowledge of nonlinear optical processes and contribute materials design principles for control of light-matter interactions.To integrate outreach and education with the research, the PI will host and train high-school students from under-represented groups and secondary school teachers in scientific computing and simulations during summers to motivate the aspiration and curiosity of the students in science and engineering. The PI will also integrate the research into undergraduate and graduate curricula, provide multidisciplinary training to undergraduate and graduate students, disseminate the developed computational tools in computational materials science summer schools, and promote women in materials science and engineering through seminar series. The graduate students working on this project will acquire a solid interdisciplinary background in physics, materials science, and high-performance computing. In addition, the computational methods, codes, and data generated from this project will be broadly disseminated to the scientific community, the industry, and the general public through open-source distributions with the intent to benefit the broader research, education, and outreach in the community.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术摘要材料研究部和先进网络基础设施办公室为该职业奖提供资金。该奖项支持开发和应用计算方法来了解非线性光学材料如何响应光的综合研究和教育工作。非线性光学材料对光的响应取决于光的强度,这会产生可用于技术应用的有趣现象。例如,折射率对光强度的依赖性可能会导致非线性光学材料像透镜一样发挥作用,导致光束在穿过材料时变窄或塌陷。这些材料可应用于医学无创成像、光电设备和先进的灵敏量子机械传感器等领域。在微观水平上理解和准确预测强光与物质的相互作用将有助于设计具有针对特定应用的定制非线性光学特性的新型材料。该项目的目标是开发和应用从了解成分身份开始的方法原子来预测特定的非线性光学材料将如何响应光。 重点将放在新型二维材料和拓扑材料上,这些材料可以具有覆盖材料表面和边缘的奇异特性的金属态。这项工作将阐明对称性、拓扑、表面/边缘和自旋轨道耦合在非线性光与物质相互作用中的基本作用。这项工作获得的结果也将有助于产生非线性光学材料和纳米结构的设计原理。所获得的方法和数据将通过开源发行版广泛传播给科学界、行业和公众。为了将推广和教育与研究相结合,PI 将接待和培训来自代表性不足群体的高中生以及夏季期间进行科学计算和模拟的中学教师。该项目负责人还将将该研究纳入本科生和研究生课程,为本科生和研究生提供多学科培训,在计算材料科学暑期学校传播计算工具,并通过系列研讨会促进材料科学与工程领域的女性发展。从事该项目的研究生将获得物理学、材料科学和高性能计算方面的跨学科背景。生成的计算机代码和数据将与公众共享,以利于社区的教育和推广。技术摘要材料研究部和先进网络基础设施办公室为该职业奖提供资金。该奖项支持开发和应用预测第一原理方法来理解材料的非线性光学响应的综合研究和教育工作。具有定制非线性光学特性的材料和纳米结构不仅对于理解、探测和最终控制纳米尺度的光与物质相互作用很重要,而且对于超快非线性光学、生物传感、全光晶体管和计算机等许多应用来说也是非常理想的。光学量子隐形传态、通信和计算。最近,在二维晶体和拓扑材料中发现了二次和三次谐波产生等巨大的非线性光学过程,这对当前的理解提出了挑战,需要在微观层面进行基础研究。该项目的目标是增进对材料中非线性光与物质相互作用的基本理解和理论预测。该研究将重点开发和应用基于第一原理密度泛函的方法和方法来研究并最终预测材料的二阶和三阶非线性光学响应。自旋轨道耦合、晶体对称性、因果关系、电子-空穴相互作用、准粒子能量以及由于载流子-载流子和载流子-声子相互作用引起的准粒子寿命将包含在这个第一原理理论框架中。将特别强调阐明对称性、电子拓扑、表面/边缘和自旋轨道耦合在二维材料和拓扑材料中的作用。获得的结果将产生非线性光学过程的新知识,并为控制光与物质相互作用提供材料设计原理。为了将推广和教育与研究相结合,PI将接待和培训来自代表性不足群体和中学的高中生学校教师在暑假期间教授科学计算和模拟,以激发学生对科学和工程的渴望和好奇心。该项目负责人还将将该研究纳入本科生和研究生课程,为本科生和研究生提供多学科培训,在计算材料科学暑期学校传播开发的计算工具,并通过系列研讨会促进材料科学与工程领域的女性发展。从事该项目的研究生将获得物理学、材料科学和高性能计算方面扎实的跨学科背景。此外,该项目生成的计算方法、代码和数据将通过开源发行版广泛传播给科学界、业界和公众,旨在造福于更广泛的研究、教育和推广。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(21)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Atomic Hourglass and Thermometer Based on Diffusion of a Mobile Dopant in VO 2
基于 VO 2 中移动掺杂剂扩散的原子沙漏和温度计
- DOI:10.1021/jacs.0c07152
- 发表时间:2020-09
- 期刊:
- 影响因子:15
- 作者:Sellers, Diane G.;Braham, Erick J.;Villarreal, Ruben;Zhang, Baiyu;Parija, Abhishek;Brown, Timothy D.;Alivio, Theodore E.;Clarke, Heidi;De Jesus, Luis R.;Zuin, Lucia;et al
- 通讯作者:et al
Nonlinear Optical and Photocurrent Responses in Janus MoSSe Monolayer and MoS 2 –MoSSe van der Waals Heterostructure
Janus MoSSe 单层和 MoS 2 – MoSSe 范德华异质结构中的非线性光学和光电流响应
- DOI:10.1021/acs.nanolett.2c00898
- 发表时间:2022-05
- 期刊:
- 影响因子:10.8
- 作者:Strasser, Ale;Wang, Hua;Qian, Xiaofeng
- 通讯作者:Qian, Xiaofeng
Light-Induced Activation of Forbidden Exciton Transition in Strongly Confined Perovskite Quantum Dots
强限域钙钛矿量子点中禁激子跃迁的光诱导激活
- DOI:10.1021/acsnano.8b06649
- 发表时间:2018-11
- 期刊:
- 影响因子:17.1
- 作者:Rossi, Daniel;Wang, Hua;Dong, Yitong;Qiao, Tian;Qian, Xiaofeng;Son, Dong Hee
- 通讯作者:Son, Dong Hee
Correlations and incipient antiferromagnetic order within the linear Mn chains of metallic Ti4MnBi2
金属 Ti4MnBi2 线性 Mn 链内的相关性和初期反铁磁序
- DOI:10.1103/physrevb.102.014406
- 发表时间:2020
- 期刊:
- 影响因子:3.7
- 作者:Pandey A;Miao P;Klemm M;He H;Wang H;Qian X;Lynn JW;Aronson MC
- 通讯作者:Aronson MC
Giant Nonlinear Optical Response via Coherent Stacking of In‐Plane Ferroelectric Layers
通过平面内铁电层的相干堆叠实现巨大的非线性光学响应
- DOI:10.1002/adma.202210894
- 发表时间:2023-05
- 期刊:
- 影响因子:29.4
- 作者:Mao, Nannan;Luo, Yue;Chiu, Ming‐Hui;Shi, Chuqiao;Ji, Xiang;Pieshkov, Tymofii S.;Lin, Yuxuan;Tang, Hao‐Lin;Akey, Austin J.;Gardener, Jules A.;et al
- 通讯作者:et al
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xiaofeng Qian其他文献
Nonlinear Optical and Photocurrent Responses in Janus MoSSe Monolayer and MoS2-MoSSe van der Waals Heterostructure.
Janus MoSSe 单层和 MoS2-MoSSe 范德华异质结构中的非线性光学和光电流响应。
- DOI:
10.1021/acs.nanolett.2c00898 - 发表时间:
2022-05-09 - 期刊:
- 影响因子:10.8
- 作者:
A. Strasser;Hua Wang;Xiaofeng Qian - 通讯作者:
Xiaofeng Qian
First-principles investigation of organic photovoltaic materials C-60, C-70, [C-60]PCBM, and bis-[C-60]PCBM using a many-body G(0)W(0)-Lanczos approach
使用多体 G(0)W(0)-Lanczos 方法对有机光伏材料 C-60、C-70、[C-60]PCBM 和双-[C-60]PCBM 进行第一性原理研究
- DOI:
10.1103/physrevb.91.245105 - 发表时间:
2014-11-08 - 期刊:
- 影响因子:3.7
- 作者:
Xiaofeng Qian;P. Umari;N. Marzari - 通讯作者:
N. Marzari
Patterning of graphene.
石墨烯的图案化。
- DOI:
10.1039/c2nr30790a - 发表时间:
2012-07-27 - 期刊:
- 影响因子:6.7
- 作者:
Ji Feng;Wenbin Li;Xiaofeng Qian;J. Qi;L. Qi;Ju Li - 通讯作者:
Ju Li
Crystal field effect induced topological crystalline insulators in monolayer IV-VI semiconductors.
单层 IV-VI 半导体中的晶体场效应诱导拓扑晶体绝缘体。
- DOI:
10.1021/acs.nanolett.5b00308 - 发表时间:
2015-03-09 - 期刊:
- 影响因子:10.8
- 作者:
Junwei Liu;Xiaofeng Qian;L. Fu - 通讯作者:
L. Fu
In situ observation of random solid solution zone in LiFePO₄ electrode.
LiFePO™ 电极中随机固溶体区的原位观察。
- DOI:
10.1021/nl501415b - 发表时间:
2014-06-09 - 期刊:
- 影响因子:10.8
- 作者:
J. Niu;A. Kushima;Xiaofeng Qian;L. Qi;Kai Xiang;Y. Chiang;Ju Li - 通讯作者:
Ju Li
Xiaofeng Qian的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xiaofeng Qian', 18)}}的其他基金
LEAPS-MPS: Quantum Simulation with Classical Optics
LEAPS-MPS:经典光学的量子模拟
- 批准号:
2316878 - 财政年份:2023
- 资助金额:
$ 43.95万 - 项目类别:
Standard Grant
Collaborative Research: Machine Learning-assisted Ultrafast Physical Vapor Deposition of High Quality, Large-area Functional Thin Films
合作研究:机器学习辅助超快物理气相沉积高质量、大面积功能薄膜
- 批准号:
2226908 - 财政年份:2023
- 资助金额:
$ 43.95万 - 项目类别:
Standard Grant
Collaborative Research: Probing quasiparticle excitations in TMDC Moiré superlattices for revealing and understanding novel two-dimensional correlated phases
合作研究:探测 TMDC 莫尔超晶格中的准粒子激发,以揭示和理解新颖的二维相关相
- 批准号:
2103842 - 财政年份:2021
- 资助金额:
$ 43.95万 - 项目类别:
Continuing Grant
Collaborative Research: Probing quasiparticle excitations in TMDC Moiré superlattices for revealing and understanding novel two-dimensional correlated phases
合作研究:探测 TMDC 莫尔超晶格中的准粒子激发,以揭示和理解新颖的二维相关相
- 批准号:
2103842 - 财政年份:2021
- 资助金额:
$ 43.95万 - 项目类别:
Continuing Grant
相似国自然基金
准一维铬砷基超导材料电子关联动力学性质的第一性原理研究
- 批准号:12304175
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于第一性原理训练深度势研究光电催化材料中的极化子问题
- 批准号:12304216
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于第一性原理精度分子动力学的过冷水反常物理性质研究
- 批准号:12374217
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
基于第一性原理设计制备高性能钨合金的基础研究
- 批准号:52371091
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
金属-配体动态界面催化二氧化碳还原的第一性原理分子动力学研究
- 批准号:22303093
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: Real-Time First-Principles Approach to Understanding Many-Body Effects on High Harmonic Generation in Solids
职业:实时第一性原理方法来理解固体高次谐波产生的多体效应
- 批准号:
2337987 - 财政年份:2024
- 资助金额:
$ 43.95万 - 项目类别:
Continuing Grant
CAREER: First-Principles Discovery of Optically Excited States in Van der Waals Magnetic Structures
职业生涯:范德华磁结构中光激发态的第一原理发现
- 批准号:
2339995 - 财政年份:2024
- 资助金额:
$ 43.95万 - 项目类别:
Continuing Grant
CAREER: Understanding Electrochemical Metal Extraction in Molten Salts from First Principles
职业:从第一原理了解熔盐中的电化学金属萃取
- 批准号:
2340765 - 财政年份:2024
- 资助金额:
$ 43.95万 - 项目类别:
Continuing Grant
CAREER: First-principles Predictive Understanding of Chemical Order in Complex Concentrated Alloys: Structures, Dynamics, and Defect Characteristics
职业:复杂浓缩合金中化学顺序的第一原理预测性理解:结构、动力学和缺陷特征
- 批准号:
2415119 - 财政年份:2024
- 资助金额:
$ 43.95万 - 项目类别:
Continuing Grant
CAREER: Quantum Coherence, Optical Readout, and Quantum Transduction for Spin Qubits from First-Principles Calculations
职业:基于第一原理计算的自旋量子位的量子相干性、光学读出和量子传导
- 批准号:
2342876 - 财政年份:2023
- 资助金额:
$ 43.95万 - 项目类别:
Continuing Grant