Collaborative Research: Intermittency in Multi-Phase Flows in 2D and 3D Porous Media: Coordinated Experiments and Simulations

合作研究:2D 和 3D 多孔介质中多相流的间歇性:协调实验和模拟

基本信息

  • 批准号:
    1804089
  • 负责人:
  • 金额:
    $ 6.64万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-08-01 至 2019-10-31
  • 项目状态:
    已结题

项目摘要

Understanding how fluids move through porous media is of great importance. Much of the water we rely on comes from groundwater which passes through soils. For a significant part of our energy needs we must extract oil and gas from the subsurface. In addition, some of the most promising proposed methods to reduce greenhouse gas emissions to the atmosphere rely on injecting CO2 back into porous media in the subsurface, where it can be trapped forever. Similarly, many industrial processes that provide essential products or clean our air and water supplies rely on passing fluids through engineered porous media. Virtually all of these flows are complex, because they can involve multiple fluids interacting with highly heterogeneous porous geometries. While scientists have a reasonable understanding of how a single fluid might move through such systems, when two different fluids are involved our predictive skills deteriorate significantly. And yet, understanding and better predicting these flows will enhance our ability to improve access to clean water, extract and use energy resources more efficiently, protect our future environment and design more effective industrial processes. This project focuses on such complex flows. By combining state of the art experiments and theory, the investigators will develop and enhance our current understanding of multiphase flows through porous media and develop novel methods and models to predict their complex behaviors. Graduate and undergraduate students will receive training as part of this research effort, and a high resolution, high fidelity visual teaching experience on environmental fluid mechanics will be developed in collaboration with Notre Dame's Digital Visualization Theater and shared openly with other institutions.A coordinated experimental and numerical program will be undertaken to advance understanding of and ability to model transport in multi-phase flows in 2D and 3D porous media. Particle tracking in both single- and multi-phase flow in 2D and 3D porous models across viscous and inertial flow regimes will be conducted leveraging a novel refractive-index-matching approach. Additionally, to enable a broader and more efficient sweep of the parameter space, a complementary series of cutting edge Lattice Boltzmann simulations, validated with experimental data, will be conducted. These innovative experiments and simulations, tightly coupled to state-of-the-art transport modeling, will validate and advance modeling strategies, transforming our understanding of intermittency in single- and multi-phase flows in 2D and 3D porous media and improving predictions of transport processes at the macro-scale for a range of engineering and environmental applications.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
了解流体如何穿过多孔介质非常重要。 我们依赖的大部分水来自流经土壤的地下水。 为了满足我们能源需求的很大一部分,我们必须从地下开采石油和天然气。 此外,一些最有前途的减少大气温室气体排放的方法依赖于将二氧化碳注入地下的多孔介质中,在那里它可以被永远捕获。 同样,许多提供必需产品或清洁空气和水源的工业过程都依赖于使流体通过工程多孔介质。事实上,所有这些流动都很复杂,因为它们可能涉及多种流体与高度异质的多孔几何形状相互作用。虽然科学家们对单一流体如何在此类系统中移动有合理的理解,但当涉及两种不同的流体时,我们的预测能力会显着下降。然而,了解和更好地预测这些流量将增强我们改善清洁水的获取、更有效地提取和使用能源、保护我们未来的环境以及设计更有效的工业流程的能力。该项目专注于此类复杂的流程。通过结合最先进的实验和理论,研究人员将发展和增强我们目前对多孔介质多相流的理解,并开发新的方法和模型来预测其复杂行为。 作为这项研究工作的一部分,研究生和本科生将接受培训,并将与圣母大学数字可视化剧院合作开发环境流体力学的高分辨率、高保真视觉教学体验,并与其他机构公开共享。将开展数值计划,以增进对 2D 和 3D 多孔介质中多相流传输的理解和建模能力。 将利用一种新颖的折射率匹配方法,在粘性和惯性流态的 2D 和 3D 多孔模型中进行单相流和多相流中的颗粒跟踪。此外,为了更广泛、更有效地扫描参数空间,将进行一系列补充性的前沿格子玻尔兹曼模拟,并通过实验数据进行验证。这些创新的实验和模拟与最先进的传输建模紧密结合,将验证和推进建模策略,改变我们对 2D 和 3D 多孔介质中单相和多相流间歇性的理解,并改进传输预测该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Farzan Kazemifar其他文献

Farzan Kazemifar的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Farzan Kazemifar', 18)}}的其他基金

Collaborative Research: Intermittency in Multi-Phase Flows in 2D and 3D Porous Media: Coordinated Experiments and Simulations
合作研究:2D 和 3D 多孔介质中多相流的间歇性:协调实验和模拟
  • 批准号:
    1953352
  • 财政年份:
    2019
  • 资助金额:
    $ 6.64万
  • 项目类别:
    Standard Grant

相似国自然基金

间歇性列车荷载作用下路基填料变形特性及计算模型研究
  • 批准号:
    52308335
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
间歇性缺氧重编程肝脏巨噬细胞通过IL-6/NLRP3/GPX4信号诱导NAFLD肝损伤的机制研究
  • 批准号:
    82371135
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
甲硫氨酸间歇性饥饿对肿瘤细胞铁死亡及抗肿瘤免疫应答的调控机制研究
  • 批准号:
    32370827
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
SCD1调控α-Syn相分离在间歇性低氧所致认知障碍中的机制研究
  • 批准号:
    82370092
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
GLI1乙酰化修饰在间歇性缺氧诱导的Hedgehog通路激活及心脏纤维化中的作用与机制研究
  • 批准号:
    82370258
  • 批准年份:
    2023
  • 资助金额:
    47 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
  • 批准号:
    2345581
  • 财政年份:
    2024
  • 资助金额:
    $ 6.64万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
  • 批准号:
    2345582
  • 财政年份:
    2024
  • 资助金额:
    $ 6.64万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
  • 批准号:
    2345583
  • 财政年份:
    2024
  • 资助金额:
    $ 6.64万
  • 项目类别:
    Standard Grant
Collaborative Research: Intermittency in Multi-Phase Flows in 2D and 3D Porous Media: Coordinated Experiments and Simulations
合作研究:2D 和 3D 多孔介质中多相流的间歇性:协调实验和模拟
  • 批准号:
    1953352
  • 财政年份:
    2019
  • 资助金额:
    $ 6.64万
  • 项目类别:
    Standard Grant
Collaborative Research: Intermittency in Multi-Phase Flows in 2D and 3D Porous Media: Coordinated Experiments and Simulations
合作研究:2D 和 3D 多孔介质中多相流的间歇性:协调实验和模拟
  • 批准号:
    1803989
  • 财政年份:
    2018
  • 资助金额:
    $ 6.64万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了