Collaborative Research: Intermittency in Multi-Phase Flows in 2D and 3D Porous Media: Coordinated Experiments and Simulations
合作研究:2D 和 3D 多孔介质中多相流的间歇性:协调实验和模拟
基本信息
- 批准号:1804089
- 负责人:
- 金额:$ 6.64万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-08-01 至 2019-10-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Understanding how fluids move through porous media is of great importance. Much of the water we rely on comes from groundwater which passes through soils. For a significant part of our energy needs we must extract oil and gas from the subsurface. In addition, some of the most promising proposed methods to reduce greenhouse gas emissions to the atmosphere rely on injecting CO2 back into porous media in the subsurface, where it can be trapped forever. Similarly, many industrial processes that provide essential products or clean our air and water supplies rely on passing fluids through engineered porous media. Virtually all of these flows are complex, because they can involve multiple fluids interacting with highly heterogeneous porous geometries. While scientists have a reasonable understanding of how a single fluid might move through such systems, when two different fluids are involved our predictive skills deteriorate significantly. And yet, understanding and better predicting these flows will enhance our ability to improve access to clean water, extract and use energy resources more efficiently, protect our future environment and design more effective industrial processes. This project focuses on such complex flows. By combining state of the art experiments and theory, the investigators will develop and enhance our current understanding of multiphase flows through porous media and develop novel methods and models to predict their complex behaviors. Graduate and undergraduate students will receive training as part of this research effort, and a high resolution, high fidelity visual teaching experience on environmental fluid mechanics will be developed in collaboration with Notre Dame's Digital Visualization Theater and shared openly with other institutions.A coordinated experimental and numerical program will be undertaken to advance understanding of and ability to model transport in multi-phase flows in 2D and 3D porous media. Particle tracking in both single- and multi-phase flow in 2D and 3D porous models across viscous and inertial flow regimes will be conducted leveraging a novel refractive-index-matching approach. Additionally, to enable a broader and more efficient sweep of the parameter space, a complementary series of cutting edge Lattice Boltzmann simulations, validated with experimental data, will be conducted. These innovative experiments and simulations, tightly coupled to state-of-the-art transport modeling, will validate and advance modeling strategies, transforming our understanding of intermittency in single- and multi-phase flows in 2D and 3D porous media and improving predictions of transport processes at the macro-scale for a range of engineering and environmental applications.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
了解流体如何通过多孔媒体移动至关重要。 我们依靠的大部分水都来自通过土壤的地下水。 对于我们的能源需求的很大一部分,我们必须从地下提取石油和天然气。 此外,一些最有前途的减少温室气体排放到大气中的最有希望的方法依赖于将二氧化碳返回到地下的多孔介质中,在那里它可以永远被困。 同样,许多提供必需产品或清洁我们的空气和水供应的工业过程都取决于通过工程的多孔介质传递流体。几乎所有这些流都很复杂,因为它们可能涉及多种流体与高度异质的多孔几何形状相互作用。尽管科学家对单个流体如何通过此类系统有合理的了解,但是当涉及两种不同的流体时,我们的预测能力会大大恶化。但是,理解和更好地预测这些流程将增强我们改善对清洁水的获取,提取和使用能源资源的能力,保护我们的未来环境并设计更有效的工业过程。该项目着重于如此复杂的流程。通过结合艺术实验和理论的状态,研究人员将通过多孔媒体发展并增强我们对多相流的理解,并开发新的方法和模型以预测其复杂行为。 研究生和本科生将接受培训作为这项研究工作的一部分,并且将与Notre Dame的数字可视化剧院合作开发高分辨率,高富裕的视觉教学经验,并与其他机构公开共享。 将利用新型的折射率匹配方法进行粘液和惯性流程的2D和3D多孔模型中的单相和多相流的粒子跟踪。此外,为了实现参数空间的更广泛,更有效的扫描,将进行一系列互补的尖端晶格Boltzmann模拟,并通过实验数据进行验证。这些创新的实验和模拟与最先进的运输建模紧密耦合,将验证和提高建模策略,从而改变我们对2D和3D多孔媒体中单相和多相流中间歇性的理解,并改善对宏观和环境应用的宏观范围的运输过程的预测。使用基金会的智力优点和更广泛的影响评估标准进行评估。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Farzan Kazemifar其他文献
Farzan Kazemifar的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Farzan Kazemifar', 18)}}的其他基金
Collaborative Research: Intermittency in Multi-Phase Flows in 2D and 3D Porous Media: Coordinated Experiments and Simulations
合作研究:2D 和 3D 多孔介质中多相流的间歇性:协调实验和模拟
- 批准号:
1953352 - 财政年份:2019
- 资助金额:
$ 6.64万 - 项目类别:
Standard Grant
相似国自然基金
间歇性列车荷载作用下路基填料变形特性及计算模型研究
- 批准号:52308335
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
GLI1乙酰化修饰在间歇性缺氧诱导的Hedgehog通路激活及心脏纤维化中的作用与机制研究
- 批准号:82370258
- 批准年份:2023
- 资助金额:47 万元
- 项目类别:面上项目
SCD1调控α-Syn相分离在间歇性低氧所致认知障碍中的机制研究
- 批准号:82370092
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
瞬变外力场作用下环状流液膜界面波动诱发间歇性干涸机制研究
- 批准号:12305178
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
间歇性缺氧重编程肝脏巨噬细胞通过IL-6/NLRP3/GPX4信号诱导NAFLD肝损伤的机制研究
- 批准号:82371135
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
- 批准号:
2345581 - 财政年份:2024
- 资助金额:
$ 6.64万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
- 批准号:
2345582 - 财政年份:2024
- 资助金额:
$ 6.64万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
- 批准号:
2345583 - 财政年份:2024
- 资助金额:
$ 6.64万 - 项目类别:
Standard Grant
Collaborative Research: Intermittency in Multi-Phase Flows in 2D and 3D Porous Media: Coordinated Experiments and Simulations
合作研究:2D 和 3D 多孔介质中多相流的间歇性:协调实验和模拟
- 批准号:
1953352 - 财政年份:2019
- 资助金额:
$ 6.64万 - 项目类别:
Standard Grant
Collaborative Research: Intermittency in Multi-Phase Flows in 2D and 3D Porous Media: Coordinated Experiments and Simulations
合作研究:2D 和 3D 多孔介质中多相流的间歇性:协调实验和模拟
- 批准号:
1803989 - 财政年份:2018
- 资助金额:
$ 6.64万 - 项目类别:
Standard Grant