CAREER: Enabling Reproducibility of Interactive Visual Data Analysis

职业:实现交互式可视化数据分析的可重复性

基本信息

  • 批准号:
    1751238
  • 负责人:
  • 金额:
    $ 51.22万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-04-01 至 2025-03-31
  • 项目状态:
    未结题

项目摘要

Reproducibility and justifiability are widely recognized as critical aspects of data-driven decision making in fields as varied as scientific research, business, healthcare, or intelligence analysis. This project is concerned with enabling reproducibility and justifiability of decisions in the data analysis process, specifically as it relates to visual data analysis. Visualization is an important tool for discovery, yet decisions made by humans based on visualizations of data are difficult to capture and to justify. This project will develop methods to justify, communicate, and audit decisions made based on visual analysis. This, in turn will lead to better outcomes, achieved with less effort and cost. The increasing use of visual analysis tools for decision making will make data analysis accessible to a broad variety of people, as visual analysis tools are generally easier to use than scripting languages and do not require extensive computational and statistical training. This research and its related activities increase accessibility and enhance the data analysis infrastructure for research and education. To achieve these goals, this research will develop a framework for making visual analysis sessions not only reproducible but also reusable. The approach is based on tracking semantically meaningful provenance data during an interactive visual analysis session. Once a discovery is made, analysts can use this history to curate a succinct analysis story, adding justifications and explanations to make their analysis reproducible by others. Using a semi-automatic process, analysts will be able to make their actions data-aware, so that their analysis processes become robust to changes, such as updates in the data. A second contribution of the proposed work is the integration of visual analysis into computational analysis processes. While visualization is commonly used to present computational analysis results, the results of a visual analysis session are rarely used to feed into further computational processes. The techniques developed in this project will allow analysts to feed analysis results (selections, aggregations, filters, etc.) back into a computational environment. This will make it possible to use interactive visualization at any point in the data analysis process while maintaining reproducibility and enabling reuse. The expected results include new methods to capture user intent, create data stories from analysis processes, and to integrate computational and visual data analysis, leveraging the strength of both, human abilities and computational power. The results will be disseminated in publications and in the form of open source software, and accessible via the project website (http://vdl.sci.utah.edu/projects/2018-nsf-reproducibility/).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在科学研究、商业、医疗保健或情报分析等领域,可重复性和合理性被广泛认为是数据驱动决策的关键方面。该项目涉及在数据分析过程中实现决策的可重复性和合理性,特别是与可视化数据分析相关的决策。可视化是发现的重要工具,但人类基于数据可视化做出的决策很难捕获和证明其合理性。该项目将开发方法来证明、沟通和审核基于可视化分析的决策。反过来,这将带来更好的结果,并以更少的努力和成本实现。越来越多地使用可视化分析工具进行决策将使数据分析可供更多人使用,因为可视化分析工具通常比脚本语言更易于使用,并且不需要大量的计算和统计培训。这项研究及其相关活动增加了可访问性,并增强了研究和教育的数据分析基础设施。 为了实现这些目标,本研究将开发一个框架,使视觉分析会话不仅可重复,而且可重复使用。该方法基于在交互式视觉分析会话期间跟踪语义上有意义的来源数据。一旦有了发现,分析师就可以利用这段历史来策划一个简洁的分析故事,添加理由和解释,使他们的分析可以被其他人重现。使用半自动流程,分析师将能够使他们的操作具有数据感知能力,从而使他们的分析流程能够对数据更新等变化变得稳健。所提出的工作的第二个贡献是将视觉分析集成到计算分析过程中。虽然可视化通常用于呈现计算分析结果,但可视化分析会话的结果很少用于进一步的计算过程。该项目开发的技术将允许分析师将分析结果(选择、聚合、过滤器等)反馈到计算环境中。这将使在数据分析过程中的任何点使用交互式可视化成为可能,同时保持可重复性并实现重用。预期结果包括捕获用户意图、从分析过程中创建数据故事以及集成计算和视觉数据分析的新方法,充分利用人类能力和计算能力的优势。结果将通过出版物和开源软件的形式传播,并可通过项目网站 (http://vdl.sci.utah.edu/projects/2018-nsf-reproducibility/) 进行访问。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Origraph: Interactive Network Wrangling
Origraph:互动网络争论
Ferret: Reviewing Tabular Datasets for Manipulation
Ferret:检查表格数据集以进行操作
  • DOI:
    10.1111/cgf.14822
  • 发表时间:
    2023-06-01
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Devin Lange;Shaurya Sahai;J. M. Phillips;A. Lex
  • 通讯作者:
    A. Lex
reVISit: Looking Under the Hood of Interactive Visualization Studies
reVISit:深入探究交互式可视化研究
Taggle: Combining overview and details in tabular data visualizations
Taggle:将表格数据可视化中的概述和详细信息相结合
  • DOI:
    10.1177/1473871619878085
  • 发表时间:
    2020-04
  • 期刊:
  • 影响因子:
    2.3
  • 作者:
    Furmanova, Katarina;Gratzl, Samuel;Stitz, Holger;Zichner, Thomas;Jaresova, Miroslava;Lex, Alexander;Streit, Marc
  • 通讯作者:
    Streit, Marc
Predicting intent behind selections in scatterplot visualizations
预测散点图可视化中选择背后的意图
  • DOI:
    10.1177/14738716211038604
  • 发表时间:
    2021-10
  • 期刊:
  • 影响因子:
    2.3
  • 作者:
    Gadhave, Kiran;Görtler, Jochen;Cutler, Zach;Nobre, Carolina;Deussen, Oliver;Meyer, Miriah;Phillips, Jeff M.;Lex, Alexander
  • 通讯作者:
    Lex, Alexander
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alexander Lex其他文献

Loops: Leveraging Provenance and Visualization to Support Exploratory Data Analysis in Notebooks
循环:利用来源和可视化支持笔记本中的探索性数据分析
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Klaus Eckelt;Kiran Gadhave;Alexander Lex;M. Streit
  • 通讯作者:
    M. Streit
Visualization Guardrails: Designing Interventions Against Cherry-Picking in Interactive Data Explorers
可视化护栏:在交互式数据浏览器中设计针对选择性采摘的干预措施
C APTURING U SER I NTENT WHEN B RUSHING IN S CATTERPLOTS
在刷 S Catterplots 时捕捉用户意图
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    K. Gadhave;Jochen Görtler;Zach Cutler;C. Nobre;Oliver Deussen;Miriah Meyer;Jeff Phillips;Alexander Lex;Carolina No
  • 通讯作者:
    Carolina No
Persist: Persistent and Reusable Interactions in Computational Notebooks
持久:计算笔记本中持久且可重用的交互
  • DOI:
    10.1111/cgf.15092
  • 发表时间:
    2024-06-01
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Kiran Gadhave;Zach Cutler;Alexander Lex
  • 通讯作者:
    Alexander Lex
Composer: Visual Cohort Analysis of Patient Outcomes
作曲家:患者结果的视觉队列分析
  • DOI:
    10.1109/tvcg.2015.2467622
  • 发表时间:
    2018-09-21
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jen Rogers;Nicholas Spina;Ashley Neese;Rachel Hess;D. Brodke;Alexander Lex
  • 通讯作者:
    Alexander Lex

Alexander Lex的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alexander Lex', 18)}}的其他基金

Collaborative Research: CCRI: New: reVISit: Scalable Empirical Evaluation of Interactive Visualizations
合作研究:CCRI:新:reVISit:交互式可视化的可扩展实证评估
  • 批准号:
    2213756
  • 财政年份:
    2022
  • 资助金额:
    $ 51.22万
  • 项目类别:
    Standard Grant
EAGER: Understanding and Mitigating Misinformation in Visualizations on Social Media
EAGER:理解和减少社交媒体可视化中的错误信息
  • 批准号:
    2041136
  • 财政年份:
    2021
  • 资助金额:
    $ 51.22万
  • 项目类别:
    Standard Grant
Collaborative Research: Framework: Software: HDR: Reproducible Visual Analysis of Multivariate Networks with MultiNet
合作研究:框架:软件:HDR:使用 MultiNet 对多元网络进行可重复的视觉分析
  • 批准号:
    1835904
  • 财政年份:
    2019
  • 资助金额:
    $ 51.22万
  • 项目类别:
    Standard Grant

相似海外基金

Enabling the Assessment of Fetal Brain Development and Degeneration with Machine Learning
通过机器学习评估胎儿大脑发育和退化
  • 批准号:
    10659817
  • 财政年份:
    2023
  • 资助金额:
    $ 51.22万
  • 项目类别:
Enabling High-Impact Collaborative Clinical and Translational Research through Effective Information Management: A Prototype Intervention
通过有效的信息管理实现高影响力的协作临床和转化研究:原型干预
  • 批准号:
    10637143
  • 财政年份:
    2023
  • 资助金额:
    $ 51.22万
  • 项目类别:
Collaborative Research: Cross-Cutting Improvements: FAIR Facilities and Instruments: Enabling transparency, reproducibility, and equity through persistent identifiers
协作研究:跨领域改进:公平设施和仪器:通过持久标识符实现透明度、可重复性和公平性
  • 批准号:
    2226397
  • 财政年份:
    2022
  • 资助金额:
    $ 51.22万
  • 项目类别:
    Standard Grant
Collaborative Research: Cross-Cutting Improvements: FAIR Facilities and Instruments: Enabling transparency, reproducibility, and equity through persistent identifiers
协作研究:跨领域改进:公平设施和仪器:通过持久标识符实现透明度、可重复性和公平性
  • 批准号:
    2226398
  • 财政年份:
    2022
  • 资助金额:
    $ 51.22万
  • 项目类别:
    Standard Grant
An Enabling Technology for Human Cardiomyocyte Manufacturing
人类心肌细胞制造的使能技术
  • 批准号:
    10444010
  • 财政年份:
    2022
  • 资助金额:
    $ 51.22万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了